These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 2296164)

  • 61. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses.
    Vimmr J; Jonášová A; Bublík O
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1057-81. PubMed ID: 23733715
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study.
    Wang H; Krüger T; Varnik F
    PLoS One; 2020; 15(1):e0227770. PubMed ID: 31945111
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Finite element methods of studying mechanical factors in blood flow.
    Davids N
    Neurol Res; 1981; 3(1):83-105. PubMed ID: 6114457
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mechanical simulation of shear stress on the walls of peripheral arteries.
    Schima H; Tsangaris S; Zilla P; Kadletz M; Wolner E
    J Biomech; 1990; 23(8):845-51. PubMed ID: 2200788
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Finite element analysis of nonlinear pulsatile suspension flow dynamics in blood vessels with aneurysm.
    Kumar BV; Naidu KB
    Comput Biol Med; 1995 Jan; 25(1):1-20. PubMed ID: 7600757
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pulsatile two-dimensional flow and plaque formation in a carotid artery bifurcation.
    Nazemi M; Kleinstreuer C; Archie JP
    J Biomech; 1990; 23(10):1031-7. PubMed ID: 2229086
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Vascular wall flow-induced forces in a progressively enlarged aneurysm model.
    Neofytou P; Tsangaris S; Kyriakidis M
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):615-26. PubMed ID: 18979302
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model.
    Gijsen FJ; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jun; 32(6):601-8. PubMed ID: 10332624
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pulsatile flow and oscillating wall shear stress in the brachial artery of normotensive and hypertensive subjects.
    Simon AC; Levenson J; Flaud P
    Cardiovasc Res; 1990 Feb; 24(2):129-36. PubMed ID: 2328518
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Axial shear rate: A hemorheological factor for erythrocyte aggregation under Womersley flow in an elastic vessel based on numerical simulation.
    Lee CA; Farooqi HMU; Paeng DG
    Comput Biol Med; 2023 May; 157():106767. PubMed ID: 36933414
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Numerical investigation of the effects of blood rheology and wall elasticity in abdominal aortic aneurysm under pulsatile flow conditions.
    Bilgi C; Atalık K
    Biorheology; 2019; 56(1):51-71. PubMed ID: 31045509
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D dynamical ultrasonic model of pulsating vessel walls.
    Balocco S; Basset O; Courbebaisse G; Delachartre P; Tortoli P; Cachard C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e179-83. PubMed ID: 16857232
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Numerical analysis of flow through a severely stenotic carotid artery bifurcation.
    Stroud JS; Berger SA; Saloner D
    J Biomech Eng; 2002 Feb; 124(1):9-20. PubMed ID: 11871610
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2013 Sep; 43(8):1025-36. PubMed ID: 23816175
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Numerical simulations of pulsatile flow in an end-to-side anastomosis model.
    Shaik E; Hoffmann KA; Dietiker JF
    Mol Cell Biomech; 2007 Mar; 4(1):41-53. PubMed ID: 17879770
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.