These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 2296164)

  • 81. Coupling of shear-circumferential stress pulses investigation through stress phase angle in FSI models of stenotic artery using experimental data.
    Samaee M; Tafazzoli-Shadpour M; Alavi H
    Med Biol Eng Comput; 2017 Aug; 55(8):1147-1162. PubMed ID: 27709408
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Developing steady laminar flow through uniform straight tubes with varying wall cross curvature.
    Naili S; Thiriet M; Ribreau C
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):319-30. PubMed ID: 15621652
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 90 degrees bifurcation.
    Ku DN; Liepsch D
    Biorheology; 1986; 23(4):359-70. PubMed ID: 3779061
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A nonlinear analysis of pulsatile blood flow applied to investigate shear stress in arterial prostheses.
    Charara J; Beaudoin G; Guidoin R
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(1):1-21. PubMed ID: 1617080
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Pulsatile flow in a constricted channel.
    Tutty OR
    J Biomech Eng; 1992 Feb; 114(1):50-4. PubMed ID: 1491586
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of surrounding tissue on vessel fluid and solid mechanics.
    Zhang W; Herrera C; Atluri SN; Kassab GS
    J Biomech Eng; 2004 Dec; 126(6):760-9. PubMed ID: 15796334
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.
    Saeid Khalafvand S; Han HC
    J Biomech Eng; 2015 Jun; 137(6):061007. PubMed ID: 25761257
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Numerical investigations of pulsatile flow in stenosed artery.
    Bit A; Chattopadhyay H
    Acta Bioeng Biomech; 2014; 16(4):33-44. PubMed ID: 25598070
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory.
    Reneman RS; Arts T; Hoeks AP
    J Vasc Res; 2006; 43(3):251-69. PubMed ID: 16491020
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics.
    Satcher RL; Bussolari SR; Gimbrone MA; Dewey CF
    J Biomech Eng; 1992 Aug; 114(3):309-16. PubMed ID: 1522724
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A turbulence model for pulsatile arterial flows.
    Younis BA; Berger SA
    J Biomech Eng; 2004 Oct; 126(5):578-84. PubMed ID: 15648810
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Time dependent non-Newtonian numerical study of the flow field in a realistic model of aortic arch.
    Del Gaudio C; Morbiducci U; Grigioni M
    Int J Artif Organs; 2006 Jul; 29(7):709-18. PubMed ID: 16874678
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Contribution of the hemodynamics of A1 dysplasia or hypoplasia to anterior communicating artery aneurysms: a 3-dimensional numerical simulation study.
    Xu L; Zhang F; Wang H; Yu Y
    J Comput Assist Tomogr; 2012; 36(4):421-6. PubMed ID: 22805671
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Computer simulation of blood flow patterns in arteries of various geometries.
    Wong PK; Johnston KW; Ethier CR; Cobbold RS
    J Vasc Surg; 1991 Nov; 14(5):658-67. PubMed ID: 1942375
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Shape optimization in steady blood flow: a numerical study of non-Newtonian effects.
    Abraham F; Behr M; Heinkenschloss M
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):127-37. PubMed ID: 16154876
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Pulsatile flow of Casson's fluid through stenosed arteries with applications to blood flow.
    Chaturani P; Samy RP
    Biorheology; 1986; 23(5):499-511. PubMed ID: 3651573
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    J Biomech; 1993 Jan; 26(1):37-49. PubMed ID: 8423167
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Microcontinuum model for pulsatile blood flow through a stenosed tube.
    Chaturani P; Palanisamy V
    Biorheology; 1989; 26(4):835-46. PubMed ID: 2611375
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Pressure pulse velocity is related to the longitudinal elastic properties of the artery.
    Wang YY; Jan MY; Wang GC; Bau JG; Wang WK
    Physiol Meas; 2004 Dec; 25(6):1397-403. PubMed ID: 15712718
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.