These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22961662)

  • 1. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition.
    Chua CK; Sofer Z; Pumera M
    Chemistry; 2012 Oct; 18(42):13453-9. PubMed ID: 22961662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties.
    Poh HL; Šaněk F; Ambrosi A; Zhao G; Sofer Z; Pumera M
    Nanoscale; 2012 Jun; 4(11):3515-22. PubMed ID: 22535381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The toxicity of graphene oxides: dependence on the oxidative methods used.
    Chng EL; Pumera M
    Chemistry; 2013 Jun; 19(25):8227-35. PubMed ID: 23630053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants.
    Eng AY; Ambrosi A; Chua CK; Saněk F; Sofer Z; Pumera M
    Chemistry; 2013 Sep; 19(38):12673-83. PubMed ID: 23934966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.
    Eng AY; Sofer Z; Šimek P; Kosina J; Pumera M
    Chemistry; 2013 Nov; 19(46):15583-92. PubMed ID: 24123303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.
    Megawati M; Chua CK; Sofer Z; Klímová K; Pumera M
    Phys Chem Chem Phys; 2017 Jun; 19(24):15914-15923. PubMed ID: 28589980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide.
    Chee SY; Poh HL; Chua CK; Šaněk F; Sofer Z; Pumera M
    Phys Chem Chem Phys; 2012 Oct; 14(37):12794-9. PubMed ID: 22874853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective removal of hydroxyl groups from graphene oxide.
    Chua CK; Pumera M
    Chemistry; 2013 Feb; 19(6):2005-11. PubMed ID: 23335356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On oxygen-containing groups in chemically modified graphenes.
    Bonanni A; Ambrosi A; Pumera M
    Chemistry; 2012 Apr; 18(15):4541-8. PubMed ID: 22415893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry at chemically modified graphenes.
    Ambrosi A; Bonanni A; Sofer Z; Cross JS; Pumera M
    Chemistry; 2011 Sep; 17(38):10763-70. PubMed ID: 21837720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling.
    Eng AY; Chua CK; Pumera M
    Nanoscale; 2015 Dec; 7(47):20256-66. PubMed ID: 26579848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling.
    Jankovský O; Šimek P; Luxa J; Sedmidubský D; Tomandl I; Macková A; Mikšová R; Malinský P; Pumera M; Sofer Z
    Chempluschem; 2015 Sep; 80(9):1399-1407. PubMed ID: 31973355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Insights into the Microstructural Analysis of Graphene Oxide.
    Soni J; Sethiya A; Sahiba N; Dhaka MS; Agarwal S
    Curr Org Synth; 2021; 18(4):388-398. PubMed ID: 33441076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemistry of folded graphene edges.
    Ambrosi A; Bonanni A; Pumera M
    Nanoscale; 2011 May; 3(5):2256-60. PubMed ID: 21483940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of adenine-modified reduced graphene oxide nanosheets.
    Cao H; Wu X; Yin G; Warner JH
    Inorg Chem; 2012 Mar; 51(5):2954-60. PubMed ID: 22356685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon.
    Wong CH; Ambrosi A; Pumera M
    Nanoscale; 2012 Aug; 4(16):4972-7. PubMed ID: 22760743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16558-65. PubMed ID: 22801590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells.
    Zhang W; Yan L; Li M; Zhao R; Yang X; Ji T; Gu Z; Yin JJ; Gao X; Nie G
    Toxicol Lett; 2015 Sep; 237(2):61-71. PubMed ID: 26047786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemistry of Q-graphene.
    Randviir EP; Brownson DA; Gómez-Mingot M; Kampouris DK; Iniesta J; Banks CE
    Nanoscale; 2012 Oct; 4(20):6470-80. PubMed ID: 22961209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent attaching protein to graphene oxide via diimide-activated amidation.
    Shen J; Shi M; Yan B; Ma H; Li N; Hu Y; Ye M
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):434-8. PubMed ID: 20728319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.