These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 22961753)
1. Fermentation behavior of an osmotolerant yeast D. hansenii for Xylitol production. Misra S; Raghuwanshi S; Saxena RK Biotechnol Prog; 2012; 28(6):1457-65. PubMed ID: 22961753 [TBL] [Abstract][Full Text] [Related]
2. Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Misra S; Raghuwanshi S; Gupta P; Dutt K; Saxena RK Antonie Van Leeuwenhoek; 2012 Feb; 101(2):393-402. PubMed ID: 21956659 [TBL] [Abstract][Full Text] [Related]
3. Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Sampaio FC; Chaves-Alves VM; Converti A; Lopes Passos FM; Cavalcante Coelho JL Bioresour Technol; 2008 Feb; 99(3):502-8. PubMed ID: 17350252 [TBL] [Abstract][Full Text] [Related]
4. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Prakash G; Varma AJ; Prabhune A; Shouche Y; Rao M Bioresour Technol; 2011 Feb; 102(3):3304-8. PubMed ID: 21067918 [TBL] [Abstract][Full Text] [Related]
5. Xylose reductase activity in Debaryomyces hansenii UFV-170 cultivated in semi-synthetic medium and cotton husk hemicellulose hydrolyzate. Sampaio FC; de Faria JT; Coimbra JS; Lopes Passos FM; Converti A; Minin LA Bioprocess Biosyst Eng; 2009 Oct; 32(6):747-54. PubMed ID: 19184115 [TBL] [Abstract][Full Text] [Related]
6. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Kim JH; Han KC; Koh YH; Ryu YW; Seo JH J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422 [TBL] [Abstract][Full Text] [Related]
7. Effect of nutrient supplementation of crude or detoxified concentrated distilled grape marc hemicellulosic hydrolysates on the xylitol production by Debaryomyces hansenii. Salgado JM; Rodríguez N; Cortés S; Domínguez JM Prep Biochem Biotechnol; 2012; 42(1):1-14. PubMed ID: 22239704 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. de Arruda PV; Rodrigues Rde C; da Silva DD; Felipe Md Biodegradation; 2011 Jul; 22(4):815-22. PubMed ID: 20683763 [TBL] [Abstract][Full Text] [Related]
9. Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Rivas B; Torre P; Domínguez JM; Perego P; Converti A; Parajó JC Biotechnol Prog; 2003; 19(3):706-13. PubMed ID: 12790628 [TBL] [Abstract][Full Text] [Related]
10. Statistical approach to study the interactive effects of process parameters for enhanced xylitol production by Candida tropicalis and its potential for the synthesis of xylitol monoesters. Misra S; Raghuwanshi S; Saxena RK Food Sci Technol Int; 2013 Dec; 19(6):535-48. PubMed ID: 23733812 [TBL] [Abstract][Full Text] [Related]
11. Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii. Converti A; Domínguez JM Biotechnol Bioeng; 2001 Oct; 75(1):39-45. PubMed ID: 11536125 [TBL] [Abstract][Full Text] [Related]
12. Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii: the use of carbon material balances. Converti A; Perego P; Sordi A; Torre P Appl Biochem Biotechnol; 2002 Apr; 101(1):15-29. PubMed ID: 12008864 [TBL] [Abstract][Full Text] [Related]
13. Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Rangaswamy S; Agblevor FA Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):88-93. PubMed ID: 12382046 [TBL] [Abstract][Full Text] [Related]
14. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. Kwon SG; Park SW; Oh DK J Biosci Bioeng; 2006 Jan; 101(1):13-8. PubMed ID: 16503285 [TBL] [Abstract][Full Text] [Related]
15. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Zhang J; Geng A; Yao C; Lu Y; Li Q Bioresour Technol; 2012 Feb; 105():134-41. PubMed ID: 22196071 [TBL] [Abstract][Full Text] [Related]
16. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. Ling H; Cheng K; Ge J; Ping W N Biotechnol; 2011 Oct; 28(6):673-8. PubMed ID: 20466087 [TBL] [Abstract][Full Text] [Related]
17. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Pal S; Choudhary V; Kumar A; Biswas D; Mondal AK; Sahoo DK Bioresour Technol; 2013 Nov; 147():449-455. PubMed ID: 24012734 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Misra S; Raghuwanshi S; Saxena RK Carbohydr Polym; 2013 Feb; 92(2):1596-601. PubMed ID: 23399194 [TBL] [Abstract][Full Text] [Related]
19. A model of xylitol production by the yeast Candida mogii. Tochampa W; Sirisansaneeyakul S; Vanichsriratana W; Srinophakun P; Bakker HH; Chisti Y Bioprocess Biosyst Eng; 2005 Dec; 28(3):175-83. PubMed ID: 16215727 [TBL] [Abstract][Full Text] [Related]
20. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii. Aghcheh RK; Bonakdarpour B; Ashtiani FZ Appl Biochem Biotechnol; 2016 Nov; 180(6):1141-1151. PubMed ID: 27323768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]