BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22961851)

  • 21. Genomic Analysis of MSM Rectal Chlamydia trachomatis Isolates Identifies Predicted Tissue-Tropic Lineages Generated by Intraspecies Lateral Gene Transfer-Mediated Evolution.
    Suchland RJ; Carrell SJ; Ramsey SA; Hybiske K; Debrine AM; Sanchez J; Celum C; Rockey DD
    Infect Immun; 2022 Nov; 90(11):e0026522. PubMed ID: 36214558
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Faris R; Andersen SE; McCullough A; Gourronc F; Klingelhutz AJ; Weber MM
    Front Cell Infect Microbiol; 2019; 9():399. PubMed ID: 32039039
    [No Abstract]   [Full Text] [Related]  

  • 23. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlamydia trachomatis - the agent.
    Cevenini R; Donati M; Sambri V
    Best Pract Res Clin Obstet Gynaecol; 2002 Dec; 16(6):761-73. PubMed ID: 12473280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide codon usage profiling of ocular infective Chlamydia trachomatis serovars and drug target identification.
    Sadhasivam A; Vetrivel U
    J Biomol Struct Dyn; 2018 Jun; 36(8):1979-2003. PubMed ID: 28627970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling.
    Singh R; Liechti G; Slade JA; Maurelli AT
    Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32094256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces
    Cossé MM; Barta ML; Fisher DJ; Oesterlin LK; Niragire B; Perrinet S; Millot GA; Hefty PS; Subtil A
    Front Cell Infect Microbiol; 2018; 8():145. PubMed ID: 29868501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions.
    Yang C; Kari L; Sturdevant GL; Song L; Patton MJ; Couch CE; Ilgenfritz JM; Southern TR; Whitmire WM; Briones M; Bonner C; Grant C; Hu P; McClarty G; Caldwell HD
    Pathog Dis; 2017 Apr; 75(3):. PubMed ID: 28369275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions.
    Kari L; Southern TR; Downey CJ; Watkins HS; Randall LB; Taylor LD; Sturdevant GL; Whitmire WM; Caldwell HD
    Infect Immun; 2014 Jul; 82(7):2756-62. PubMed ID: 24733093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions.
    Stelzner K; Vollmuth N; Rudel T
    Nat Rev Microbiol; 2023 Jul; 21(7):448-462. PubMed ID: 36788308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System.
    Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L
    J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009
    [No Abstract]   [Full Text] [Related]  

  • 32. Identification and characterization of the Chlamydia trachomatis L2 S-adenosylmethionine transporter.
    Binet R; Fernandez RE; Fisher DJ; Maurelli AT
    mBio; 2011; 2(3):e00051-11. PubMed ID: 21558433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Repressor Function of the
    Zhang Q; Rosario CJ; Sheehan LM; Rizvi SM; Brothwell JA; He C; Tan M
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 31988079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Host immune responses to chlamydial inclusion membrane proteins B and C in Chlamydia trachomatis infected women with or without fertility disorders.
    Gupta R; Srivastava P; Vardhan H; Salhan S; Mittal A
    Reprod Biol Endocrinol; 2009 Apr; 7():38. PubMed ID: 19397832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.
    O'Connell CM; AbdelRahman YM; Green E; Darville HK; Saira K; Smith B; Darville T; Scurlock AM; Meyer CR; Belland RJ
    Infect Immun; 2011 Mar; 79(3):1044-56. PubMed ID: 21199910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in
    Pokorzynski ND; Thompson CC; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():394. PubMed ID: 28951853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
    Joseph SJ; Didelot X; Gandhi K; Dean D; Read TD
    Biol Direct; 2011 May; 6():28. PubMed ID: 21615910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease.
    Versteeg B; Bruisten SM; Pannekoek Y; Jolley KA; Maiden MCJ; van der Ende A; Harrison OB
    BMC Genomics; 2018 Feb; 19(1):130. PubMed ID: 29426279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability.
    Dimond ZE; Suchland RJ; Baid S; LaBrie SD; Soules KR; Stanley J; Carrell S; Kwong F; Wang Y; Rockey DD; Hybiske K; Hefty PS
    Mol Microbiol; 2021 Dec; 116(6):1433-1448. PubMed ID: 34738268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patients with Chlamydia-associated arthritis have ocular (trachoma), not genital, serovars of C. trachomatis in synovial tissue.
    Gerard HC; Stanich JA; Whittum-Hudson JA; Schumacher HR; Carter JD; Hudson AP
    Microb Pathog; 2010 Feb; 48(2):62-8. PubMed ID: 19931374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.