BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 22961870)

  • 1. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells.
    Guzzo RM; Gibson J; Xu RH; Lee FY; Drissi H
    J Cell Biochem; 2013 Feb; 114(2):480-90. PubMed ID: 22961870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of bone marrow mesenchymal stem cell and human articular cartilage derived chondroprogenitor cocultures vs. monocultures.
    Vinod E; Amirtham SM; Kachroo U
    Knee; 2021 Mar; 29():418-425. PubMed ID: 33721626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells.
    Xu M; Shaw G; Murphy M; Barry F
    Stem Cells; 2019 Jun; 37(6):754-765. PubMed ID: 30779868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrogenic differentiation potential of adult and fetal equine cell types.
    Adam EN; Janes J; Lowney R; Lambert J; Thampi P; Stromberg A; MacLeod JN
    Vet Surg; 2019 Apr; 48(3):375-387. PubMed ID: 30801754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel.
    Aisenbrey EA; Bilousova G; Payne K; Bryant SJ
    Biomater Sci; 2019 Nov; 7(12):5388-5403. PubMed ID: 31626251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of Glycosphingolipid Glycans and Chondrogenic Markers during Differentiation of Human Induced Pluripotent Stem Cells into Chondrocytes.
    Xu L; Hanamatsu H; Homan K; Onodera T; Miyazaki T; Furukawa JI; Hontani K; Tian Y; Baba R; Iwasaki N
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33271874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer.
    Steinert AF; Proffen B; Kunz M; Hendrich C; Ghivizzani SC; Nöth U; Rethwilm A; Eulert J; Evans CH
    Arthritis Res Ther; 2009; 11(5):R148. PubMed ID: 19799789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of gene expression between articular cartilage-derived cells to assess suitability of fibronectin adhesion assay to enrich chondroprogenitors.
    Kachroo U; Vinod E
    Knee; 2020 Jun; 27(3):755-759. PubMed ID: 32563433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of equine induced pluripotent stem cells into mesenchymal lineage for therapeutic use.
    Chung MJ; Park S; Son JY; Lee JY; Yun HH; Lee EJ; Lee EM; Cho GJ; Lee S; Park HS; Jeong KS
    Cell Cycle; 2019 Nov; 18(21):2954-2971. PubMed ID: 31505996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of Human Induced Pluripotent Stem Cells (iPSCs)-derived Mesenchymal Progenitors into Chondrocytes.
    Khan NM; Diaz-Hernandez ME; Drissi H
    Bio Protoc; 2023 Nov; 13(21):e4874. PubMed ID: 37969761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondral Differentiation of Induced Pluripotent Stem Cells Without Progression Into the Endochondral Pathway.
    Diederichs S; Klampfleuthner FAM; Moradi B; Richter W
    Front Cell Dev Biol; 2019; 7():270. PubMed ID: 31737632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro analysis of the effect of hyperosmolarity on the chondrogenic potential of human articular cartilage derived chondroprogenitors.
    Parameswaran R; Kachroo U; Amirtham SM; Rebekah G; Vinod E
    Tissue Cell; 2021 Oct; 72():101590. PubMed ID: 34256278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of human articular chondrocyte and chondroprogenitor cocultures and monocultures: To assess chondrogenic potential and markers of hypertrophy.
    Vinod E; Kachroo U; Ozbey O; Sathishkumar S; Boopalan PRJVC
    Tissue Cell; 2019 Apr; 57():42-48. PubMed ID: 30947962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Extracellular Matrix Expression, ERK1/2 Signaling and Cell Cohesiveness for Cartilage Yield from iPSCs.
    Buchert J; Diederichs S; Kreuser U; Merle C; Richter W
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31480758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GDF5+ chondroprogenitors derived from human pluripotent stem cells preferentially form permanent chondrocytes.
    Pothiawala A; Sahbazoglu BE; Ang BK; Matthias N; Pei G; Yan Q; Davis BR; Huard J; Zhao Z; Nakayama N
    Development; 2022 Jun; 149(11):. PubMed ID: 35451016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration.
    Vinod E; Parameswaran R; Amirtham SM; Rebekah G; Kachroo U
    Acta Histochem; 2021 May; 123(4):151713. PubMed ID: 33894479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migratory chondroprogenitors retain superior intrinsic chondrogenic potential for regenerative cartilage repair as compared to human fibronectin derived chondroprogenitors.
    Vinod E; Johnson NN; Kumar S; Amirtham SM; James JV; Livingston A; Rebekah G; Daniel AJ; Ramasamy B; Sathishkumar S
    Sci Rep; 2021 Dec; 11(1):23685. PubMed ID: 34880351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage from human-induced pluripotent stem cells: comparison with neo-cartilage from chondrocytes and bone marrow mesenchymal stromal cells.
    Rodríguez Ruiz A; Dicks A; Tuerlings M; Schepers K; van Pel M; Nelissen RGHH; Freund C; Mummery CL; Orlova V; Guilak F; Meulenbelt I; Ramos YFM
    Cell Tissue Res; 2021 Nov; 386(2):309-320. PubMed ID: 34241697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells.
    Cashman JR
    Curr Top Med Chem; 2020; 20(26):2344-2361. PubMed ID: 32819246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling human skeletal development using human pluripotent stem cells.
    Lamandé SR; Ng ES; Cameron TL; Kung LHW; Sampurno L; Rowley L; Lilianty J; Patria YN; Stenta T; Hanssen E; Bell KM; Saxena R; Stok KS; Stanley EG; Elefanty AG; Bateman JF
    Proc Natl Acad Sci U S A; 2023 May; 120(19):e2211510120. PubMed ID: 37126720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.