BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22961888)

  • 1. Mapping the mechanism of the resorcinol ring formation catalyzed by ArsB, a type III polyketide synthase from Azotobacter vinelandii.
    Posehn SE; Kim SY; Wee AG; Suh DY
    Chembiochem; 2012 Oct; 13(15):2212-7. PubMed ID: 22961888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity.
    Satou R; Miyanaga A; Ozawa H; Funa N; Katsuyama Y; Miyazono KI; Tanokura M; Ohnishi Y; Horinouchi S
    J Biol Chem; 2013 Nov; 288(47):34146-34157. PubMed ID: 24100027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii.
    Funa N; Ozawa H; Hirata A; Horinouchi S
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6356-61. PubMed ID: 16597676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type III polyketide synthases.
    Miyanaga A; Horinouchi S
    J Antibiot (Tokyo); 2009 Jul; 62(7):371-6. PubMed ID: 19557027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the Cannabis sativa olivetol-producing enzyme reveals cyclization plasticity in type III polyketide synthases.
    Kearsey LJ; Prandi N; Karuppiah V; Yan C; Leys D; Toogood H; Takano E; Scrutton NS
    FEBS J; 2020 Apr; 287(8):1511-1524. PubMed ID: 31605668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa.
    Matsuzawa M; Katsuyama Y; Funa N; Horinouchi S
    Phytochemistry; 2010 Jul; 71(10):1059-67. PubMed ID: 20451227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway.
    Taura F; Tanaka S; Taguchi C; Fukamizu T; Tanaka H; Shoyama Y; Morimoto S
    FEBS Lett; 2009 Jun; 583(12):2061-6. PubMed ID: 19454282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.
    Miyanaga A; Funa N; Awakawa T; Horinouchi S
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):871-6. PubMed ID: 18199837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa.
    Funa N; Awakawa T; Horinouchi S
    J Biol Chem; 2007 May; 282(19):14476-81. PubMed ID: 17374612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii.
    Groseclose EE; Ribbons DW
    J Bacteriol; 1981 May; 146(2):460-6. PubMed ID: 7217008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occurring ketosynthase.
    Fuchs SW; Bozhüyük KA; Kresovic D; Grundmann F; Dill V; Brachmann AO; Waterfield NR; Bode HB
    Angew Chem Int Ed Engl; 2013 Apr; 52(15):4108-12. PubMed ID: 23423827
    [No Abstract]   [Full Text] [Related]  

  • 12. Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance.
    Segura D; Vite O; Romero Y; Moreno S; Castañeda M; Espín G
    J Bacteriol; 2009 May; 191(9):3142-8. PubMed ID: 19270099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase.
    Hayashi T; Kitamura Y; Funa N; Ohnishi Y; Horinouchi S
    Chembiochem; 2011 Sep; 12(14):2166-76. PubMed ID: 21815236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii.
    Cocotl-Yañez M; Sampieri A; Moreno S; Núñez C; Castañeda M; Segura D; Espín G
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1685-1693. PubMed ID: 21454367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways.
    González-Lergier J; Broadbelt LJ; Hatzimanikatis V
    J Am Chem Soc; 2005 Jul; 127(27):9930-8. PubMed ID: 15998100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-beta-hydroxybutyrate synthesis.
    Segura D; Cruz T; Espín G
    Arch Microbiol; 2003 Jun; 179(6):437-43. PubMed ID: 12732928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs.
    Dayan FE; Watson SB; Nanayakkara NP
    J Exp Bot; 2007; 58(12):3263-72. PubMed ID: 17928374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sigma factor RpoS controls alkylresorcinol synthesis through ArpR, a LysR-type regulatory protein, during encystment of Azotobacter vinelandii.
    Romero Y; Moreno S; Guzmán J; Espín G; Segura D
    J Bacteriol; 2013 Apr; 195(8):1834-44. PubMed ID: 23378510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase.
    Gao SS; Duan A; Xu W; Yu P; Hang L; Houk KN; Tang Y
    J Am Chem Soc; 2016 Mar; 138(12):4249-59. PubMed ID: 26978228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical analysis of the substrate specificity of the beta-ketoacyl-acyl carrier protein synthase domain of module 2 of the erythromycin polyketide synthase.
    Wu J; Kinoshita K; Khosla C; Cane DE
    Biochemistry; 2004 Dec; 43(51):16301-10. PubMed ID: 15610024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.