These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22961888)

  • 41. Orchestration of discoid polyketide cyclization in the resistomycin pathway.
    Fritzsche K; Ishida K; Hertweck C
    J Am Chem Soc; 2008 Jul; 130(26):8307-16. PubMed ID: 18533655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural insights into biosynthesis of resorcinolic lipids by a type III polyketide synthase in Neurospora crassa.
    Goyal A; Saxena P; Rahman A; Singh PK; Kasbekar DP; Gokhale RS; Sankaranarayanan R
    J Struct Biol; 2008 Jun; 162(3):411-21. PubMed ID: 18462950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthetic chain terminators off-load intermediates from a type I polyketide synthase.
    Tosin M; Betancor L; Stephens E; Li WM; Spencer JB; Leadlay PF
    Chembiochem; 2010 Mar; 11(4):539-46. PubMed ID: 20135665
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The lack of rhodanese RhdA affects the sensitivity of Azotobacter vinelandii to oxidative events.
    Cereda A; Carpen A; Picariello G; Tedeschi G; Pagani S
    Biochem J; 2009 Feb; 418(1):135-43. PubMed ID: 18925874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of a pentaketide stilbene produced by a type III polyketide synthase from Pinus sylvestris and characterisation of free coenzyme A intermediates.
    Li TL; Spiteller D; Spencer JB
    Chembiochem; 2009 Mar; 10(5):896-901. PubMed ID: 19266535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene expression and biochemical characterization of Azotobacter vinelandii cyclophilins and Protein Interaction Studies of the cytoplasmic isoform with dnaK and lpxH.
    Dimou M; Venieraki A; Liakopoulos G; Kouri ED; Tampakaki A; Katinakis P
    J Mol Microbiol Biotechnol; 2011; 20(3):176-90. PubMed ID: 21734408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Azotobacter vinelandii new metabolites with antifungal activity].
    Chetverikov SP; Loginov SN
    Mikrobiologiia; 2009; 78(4):479-83. PubMed ID: 19827712
    [No Abstract]   [Full Text] [Related]  

  • 48. Mobilization of sulfane sulfur from cysteine desulfurases to the Azotobacter vinelandii sulfurtransferase RhdA.
    Cartini F; Remelli W; Dos Santos PC; Papenbrock J; Pagani S; Forlani F
    Amino Acids; 2011 Jun; 41(1):141-50. PubMed ID: 20213443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three new resorcylic acid derivatives from Sporotrichum laxum.
    Wang S; Zhang S; Zhou T; Zhan J
    Bioorg Med Chem Lett; 2013 Nov; 23(21):5806-9. PubMed ID: 24070784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymatic formation of an aromatic dodecaketide by engineered plant polyketide synthase.
    Wanibuchi K; Morita H; Noguchi H; Abe I
    Bioorg Med Chem Lett; 2011 Apr; 21(7):2083-6. PubMed ID: 21345674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
    Seefeldt LC
    Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-canonical regioisomerizations and a 'Diels-Alderase' are likely essential in the biosynthesis of spiculoic acid A.
    Pinto A; Boddy CN
    Bioorg Med Chem Lett; 2012 Aug; 22(16):5253-6. PubMed ID: 22801647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diffraction quality crystals of protein X from Azotobacter vinelandii.
    Diller TC; Shaw A; Isas JM; Burgess BK; Stout CD
    J Mol Biol; 1994 Aug; 241(4):620-1. PubMed ID: 8057382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elucidation of Piericidin A1 biosynthetic locus revealed a thioesterase-dependent mechanism of α-pyridone ring formation.
    Liu Q; Yao F; Chooi YH; Kang Q; Xu W; Li Y; Shao Y; Shi Y; Deng Z; Tang Y; You D
    Chem Biol; 2012 Feb; 19(2):243-53. PubMed ID: 22365607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [A comprehensive overview of type III polyketide synthases from plants: molecular mechanism and application perspective--a review].
    Sheng S; Zhao S
    Sheng Wu Gong Cheng Xue Bao; 2009 Nov; 25(11):1601-7. PubMed ID: 20222455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel mechanism for priming aromatic polyketide synthases.
    Salas JA
    Chem Biol; 2004 Jul; 11(7):892-4. PubMed ID: 15271346
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani.
    Kasahara K; Miyamoto T; Fujimoto T; Oguri H; Tokiwano T; Oikawa H; Ebizuka Y; Fujii I
    Chembiochem; 2010 Jun; 11(9):1245-52. PubMed ID: 20486243
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive and engaging overview of the type III family of polyketide synthases.
    Watanabe K; Praseuth AP; Wang CC
    Curr Opin Chem Biol; 2007 Jun; 11(3):279-86. PubMed ID: 17482864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cascade reactions during coronafacic acid biosynthesis: elongation, cyclization, and functionalization during Cfa7-catalyzed condensation.
    Strieter ER; Koglin A; Aron ZD; Walsh CT
    J Am Chem Soc; 2009 Feb; 131(6):2113-5. PubMed ID: 19199623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A type I/type III polyketide synthase hybrid biosynthetic pathway for the structurally unique ansa compound kendomycin.
    Wenzel SC; Bode HB; Kochems I; Müller R
    Chembiochem; 2008 Nov; 9(16):2711-21. PubMed ID: 18972512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.