These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22961896)

  • 1. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator.
    Tanaka K; Ishii Y; Ogawa J; Shima J
    Appl Environ Microbiol; 2012 Nov; 78(22):8161-3. PubMed ID: 22961896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.
    Swinnen S; Henriques SF; Shrestha R; Ho PW; Sá-Correia I; Nevoigt E
    Microb Cell Fact; 2017 Jan; 16(1):7. PubMed ID: 28068993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.
    Cunha JT; Costa CE; Ferraz L; Romaní A; Johansson B; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2018 May; 102(10):4589-4600. PubMed ID: 29607452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress.
    Mira NP; Henriques SF; Keller G; Teixeira MC; Matos RG; Arraiano CM; Winge DR; Sá-Correia I
    Nucleic Acids Res; 2011 Sep; 39(16):6896-907. PubMed ID: 21586585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2.
    Palma M; Dias PJ; Roque FC; Luzia L; Guerreiro JF; Sá-Correia I
    BMC Genomics; 2017 Jan; 18(1):75. PubMed ID: 28086780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casein Kinase I Isoform Hrr25 Is a Negative Regulator of Haa1 in the Weak Acid Stress Response Pathway in Saccharomyces cerevisiae.
    Collins ME; Black JJ; Liu Z
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Haa1 and War1 transcription factors by differential binding of weak acid anions in Saccharomyces cerevisiae.
    Kim MS; Cho KH; Park KH; Jang J; Hahn JS
    Nucleic Acids Res; 2019 Feb; 47(3):1211-1224. PubMed ID: 30476185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.
    Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of Transcription Factor ZNF1 of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of Saccharomyces cerevisiae.
    Songdech P; Ruchala J; Semkiv MV; Jensen LT; Sibirny A; Ratanakhanokchai K; Soontorngun N
    Biotechnol J; 2020 Jul; 15(7):e1900492. PubMed ID: 32196937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae.
    Mormino M; Siewers V; Nygård Y
    FEMS Yeast Res; 2021 Sep; 21(6):. PubMed ID: 34477863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.
    Ding J; Holzwarth G; Bradford CS; Cooley B; Yoshinaga AS; Patton-Vogt J; Abeliovich H; Penner MH; Bakalinsky AT
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8667-80. PubMed ID: 26051671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae.
    Sugiyama M; Akase SP; Nakanishi R; Horie H; Kaneko Y; Harashima S
    Appl Environ Microbiol; 2014 Jun; 80(11):3488-95. PubMed ID: 24682296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis.
    Haitani Y; Tanaka K; Yamamoto M; Nakamura T; Ando A; Ogawa J; Shima J
    J Biosci Bioeng; 2012 Dec; 114(6):648-51. PubMed ID: 22841865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid.
    Mira NP; Becker JD; Sá-Correia I
    OMICS; 2010 Oct; 14(5):587-601. PubMed ID: 20955010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae].
    Zhao S; Yuan B; Wang X; Chen H; Zhao X; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4293-4302. PubMed ID: 34984875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes.
    Fernandes AR; Mira NP; Vargas RC; Canelhas I; Sá-Correia I
    Biochem Biophys Res Commun; 2005 Nov; 337(1):95-103. PubMed ID: 16176797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.
    Martani F; Fossati T; Posteri R; Signori L; Porro D; Branduardi P
    Yeast; 2013 Sep; 30(9):365-78. PubMed ID: 23847041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.