These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22961957)

  • 21. Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells.
    Zhu X; Li Q; Ioannou DE; Gu D; Bonevich JE; Baumgart H; Suehle JS; Richter CA
    Nanotechnology; 2011 Jun; 22(25):254020. PubMed ID: 21572210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular memory based on nanowire-molecular wire heterostructures.
    Li C; Lei B; Fan W; Zhang D; Meyyappan M; Zhou C
    J Nanosci Nanotechnol; 2007 Jan; 7(1):138-50. PubMed ID: 17455480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor.
    Kim JY; Ahn JH; Moon DI; Park TJ; Lee SY; Choi YK
    Biosens Bioelectron; 2014 May; 55():162-7. PubMed ID: 24374298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Film-thickness-dependent conduction in ordered Si quantum dot arrays.
    Surana K; Lepage H; Lebrun JM; Doisneau B; Bellet D; Vandroux L; Le Carval G; Baudrit M; Thony P; Mur P
    Nanotechnology; 2012 Mar; 23(10):105401. PubMed ID: 22348886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template.
    Miura A; Tsukamoto R; Yoshii S; Yamashita I; Uraoka Y; Fuyuki T
    Nanotechnology; 2008 Jun; 19(25):255201. PubMed ID: 21828646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics.
    Kim BJ; Ko Y; Cho JH; Cho J
    Small; 2013 Nov; 9(22):3784-91. PubMed ID: 23666682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors.
    Kim S; Carpenter PD; Jean RK; Chen H; Zhou C; Ju S; Janes DB
    ACS Nano; 2012 Aug; 6(8):7352-61. PubMed ID: 22775468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of controllable and stable In₂O₃ nanowire transistors using an octadecylphosphonic acid self-assembled monolayer.
    Lim T; Han J; Seo K; Joo MK; Kim JS; Kim WY; Kim GT; Ju S
    Nanotechnology; 2015 Apr; 26(14):145203. PubMed ID: 25771996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach.
    Shan Y; Fonash SJ
    ACS Nano; 2008 Mar; 2(3):429-34. PubMed ID: 19206566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of silicon nanocrystal non-volatile memory devices under various programming mechanisms.
    Ng CY; Chenl TP; Wong JI; Yang M; Khor TS; New CL; Li CM; Trigg AD; Li S
    J Nanosci Nanotechnol; 2007 Jan; 7(1):329-34. PubMed ID: 17455499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Tunneling Dielectric Layer Free Floating Gate Nonvolatile Memory Employing Type-I Core-Shell Quantum Dots as Discrete Charge-Trapping/Tunneling Centers.
    Yan C; Wen J; Lin P; Sun Z
    Small; 2019 Jan; 15(1):e1804156. PubMed ID: 30480357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A charge sensor integration to tunable double quantum dots on two neighboring InAs nanowires.
    Wang X; Huang S; Wang JY; Pan D; Zhao J; Xu HQ
    Nanoscale; 2021 Jan; 13(2):1048-1054. PubMed ID: 33393583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of charge impurities in a silicon metal-oxide-semiconductor quantum dot qubit device patterned with nano-imprint lithography.
    Penthorn NE; Schoenfield JS; Rooney JD; Jiang H
    Nanotechnology; 2019 Nov; 30(46):465302. PubMed ID: 31426049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transition from direct to Fowler-Nordheim tunneling in chemically reduced graphene oxide film.
    Pandey S; Biswas C; Ghosh T; Bae JJ; Rai P; Kim GH; Thomas KJ; Lee YH; Nikolaev P; Arepalli S
    Nanoscale; 2014 Mar; 6(6):3410-7. PubMed ID: 24531922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bias-dependent conductive characteristics of individual GeSi quantum dots studied by conductive atomic force microscopy.
    Wu R; Zhang SL; Lin JH; Jiang ZM; Yang XJ
    Nanotechnology; 2011 Mar; 22(9):095708. PubMed ID: 21270493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic Ge nanowire nonvolatile memory based on a simple core-shell structure.
    Chen WH; Liu CH; Li QL; Sun QJ; Liu J; Gao X; Sun X; Wang SD
    Nanotechnology; 2014 Feb; 25(7):075201. PubMed ID: 24451917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ordering of epitaxial quantum dots on nanomembranes.
    Vastola G; Shenoy VB; Zhang YW
    ACS Nano; 2012 Apr; 6(4):3377-82. PubMed ID: 22436001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch.
    Sreejith S; Hansen R; Joshi H; Kutty RG; Liu Z; Zheng L; Yang J; Zhao Y
    Nanoscale; 2016 Apr; 8(16):8547-52. PubMed ID: 26695727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation on the Charge Loss Mechanisms of Nanoscale Charge Trap Non-Volatile Memory by Using Stretched Exponential Function.
    Lee MC; Wong HY
    J Nanosci Nanotechnol; 2016 Jan; 16(1):663-9. PubMed ID: 27398505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.