These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22961998)

  • 21. [Effect of SSU1 multi-copy expression on Saccharomyces cerevisiae sulphite production].
    Chen Y; Shen S; Wang Y; Xiao D
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1609-15. PubMed ID: 19271535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Significantly increase of glycolytic flux and pyruvate productivity in Torulopsis glabrata by heterologous expression of NADH alternative oxidase].
    Qin Y; Dong Z; Zhou J; Liu L; Chen J
    Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1483-8. PubMed ID: 20112677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging tumour cell metabolism using hyperpolarized 13C magnetic resonance spectroscopy.
    Witney TH; Brindle KM
    Biochem Soc Trans; 2010 Oct; 38(5):1220-4. PubMed ID: 20863288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosimulation of drug metabolism--a yeast based model.
    Pieper I; Wechler K; Katzberg M; Brusch L; Sørensen PG; Mensonides F; Bertau M
    Eur J Pharm Sci; 2009 Jan; 36(1):157-70. PubMed ID: 19041718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes.
    Götz R; Schlüter E; Shoham G; Zimmermann FK
    Yeast; 1999 Nov; 15(15):1619-29. PubMed ID: 10572259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate.
    Aboka FO; Heijnen JJ; van Winden WA
    FEMS Yeast Res; 2009 Mar; 9(2):191-201. PubMed ID: 19220865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
    Mutuku JM; Nose A
    Plant Cell Physiol; 2012 Jun; 53(6):1017-32. PubMed ID: 22492233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift.
    Gonzalez B; de Graaf A; Renaud M; Sahm H
    Yeast; 2000 Apr; 16(6):483-97. PubMed ID: 10790685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of glycolysis by 2-deoxygalactose in Saccharomyces cerevisiae.
    Lagunas R; Moreno E
    Yeast; 1992 Feb; 8(2):107-15. PubMed ID: 1532877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging pH with hyperpolarized 13C.
    Gallagher FA; Kettunen MI; Brindle KM
    NMR Biomed; 2011 Oct; 24(8):1006-15. PubMed ID: 21812047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualizing Metabolism in Biotechnologically Important Yeasts with dDNP NMR Reveals Evolutionary Strategies and Glycolytic Logic.
    Meier S; Wang KC; Sannelli F; Hoof JB; Wendland J; Jensen PR
    Anal Chem; 2024 Jul; 96(27):10901-10910. PubMed ID: 38938197
    [No Abstract]   [Full Text] [Related]  

  • 33. High-resolution NMR studies of Saccharomyces cerevisiae.
    Campbell-Burk SL; Shulman RG
    Annu Rev Microbiol; 1987; 41():595-616. PubMed ID: 3318680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing a Method to Estimate the Downstream Metabolite Signals from Hyperpolarized [1-
    Hsieh CY; Sung CH; Shen YE; Lai YC; Lu KY; Lin G
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short communication: possible mechanism for inhibiting the formation of polymers originated from 5-hydroxymethyl-2-furaldehyde by sulfite groups in the dairy thermal process.
    Guan YG; Zhu SM; Yu SJ; Xu XB; Zhu LC
    J Dairy Sci; 2013 May; 96(5):2826-31. PubMed ID: 23498013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The response of glycolytic and non-glycolytic mammalian cells to the inhibitory action of fluoro-pyruvate.
    TRAUB A; GINZBURG Y
    Exp Cell Res; 1959 May; 17(2):246-55. PubMed ID: 13663877
    [No Abstract]   [Full Text] [Related]  

  • 37. Marking of metabolites in the diagnostics of metabolic diseases and in the investigation of xenobiotics metabolism using NMR spectroscopy.
    Krawczyk H
    J Pharm Biomed Anal; 2016 Oct; 130():169-180. PubMed ID: 27260140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-Cell NMR Approach for Real-Time Exploration of Pathway Versatility: Substrate Mixtures in Nonengineered Yeast.
    Sannelli F; Jensen PR; Meier S
    Anal Chem; 2023 May; 95(18):7262-7270. PubMed ID: 37097609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton NMR spectroscopy of bile for monitoring the excretion of endogenous and xenobiotic metabolites: application to para-aminophenol.
    Gartland KP; Eason CT; Wade KE; Bonner FW; Nicholson JK
    J Pharm Biomed Anal; 1989; 7(6):699-707. PubMed ID: 2562324
    [No Abstract]   [Full Text] [Related]  

  • 40. Difference between Extra- and Intracellular T
    Karlsson M; Jensen PR; Ardenkjaer-Larsen JH; Lerche MH
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13567-13570. PubMed ID: 27666128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.