These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 22962340)

  • 1. Evaluation of research in biomedical ontologies.
    Hoehndorf R; Dumontier M; Gkoutos GV
    Brief Bioinform; 2013 Nov; 14(6):696-712. PubMed ID: 22962340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.
    Amith M; He Z; Bian J; Lossio-Ventura JA; Tao C
    J Biomed Inform; 2018 Apr; 80():1-13. PubMed ID: 29462669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of ontologies in biological and biomedical research: a functional perspective.
    Hoehndorf R; Schofield PN; Gkoutos GV
    Brief Bioinform; 2015 Nov; 16(6):1069-80. PubMed ID: 25863278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matching biomedical ontologies with GCN-based feature propagation.
    Wang P; Zou S; Liu J; Ke W
    Math Biosci Eng; 2022 Jun; 19(8):8479-8504. PubMed ID: 35801474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient safety classifications, taxonomies and ontologies: A systematic review on development and evaluation methodologies.
    Taheri Moghadam S; Hooman N; Sheikhtaheri A
    J Biomed Inform; 2022 Sep; 133():104150. PubMed ID: 35878822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formal axioms in biomedical ontologies improve analysis and interpretation of associated data.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2020 Apr; 36(7):2229-2236. PubMed ID: 31821406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of foundational ontologies in biomedical research.
    Bernabé CH; Queralt-Rosinach N; Silva Souza VE; Bonino da Silva Santos LO; Mons B; Jacobsen A; Roos M
    J Biomed Semantics; 2023 Dec; 14(1):21. PubMed ID: 38082345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.
    Lamy JB
    Artif Intell Med; 2017 Jul; 80():11-28. PubMed ID: 28818520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BiOSS: A system for biomedical ontology selection.
    Martínez-Romero M; Vázquez-Naya JM; Pereira J; Pazos A
    Comput Methods Programs Biomed; 2014 Apr; 114(1):125-40. PubMed ID: 24573129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NCBO Ontology Recommender 2.0: an enhanced approach for biomedical ontology recommendation.
    Martínez-Romero M; Jonquet C; O'Connor MJ; Graybeal J; Pazos A; Musen MA
    J Biomed Semantics; 2017 Jun; 8(1):21. PubMed ID: 28592275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Special supplement issue on quality assurance and enrichment of biological and biomedical ontologies and terminologies.
    Cui L; Agrawal A
    BMC Med Inform Decis Mak; 2024 Aug; 23(Suppl 1):302. PubMed ID: 39215285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matching Biomedical Ontologies: Construction of Matching Clues and Systematic Evaluation of Different Combinations of Matchers.
    Wang P; Hu Y; Bai S; Zou S
    JMIR Med Inform; 2021 Aug; 9(8):e28212. PubMed ID: 34420930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tackling the challenges of matching biomedical ontologies.
    Faria D; Pesquita C; Mott I; Martins C; Couto FM; Cruz IF
    J Biomed Semantics; 2018 Jan; 9(1):4. PubMed ID: 29335022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical Ontologies to Guide AI Development in Radiology.
    Filice RW; Kahn CE
    J Digit Imaging; 2021 Dec; 34(6):1331-1341. PubMed ID: 34724143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the interoperability of biomedical ontologies with compound alignments.
    Oliveira D; Pesquita C
    J Biomed Semantics; 2018 Jan; 9(1):1. PubMed ID: 29316968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supporting the analysis of ontology evolution processes through the combination of static and dynamic scaling functions in OQuaRE.
    Duque-Ramos A; Quesada-Martínez M; Iniesta-Moreno M; Fernández-Breis JT; Stevens R
    J Biomed Semantics; 2016 Oct; 7(1):63. PubMed ID: 27751176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards automated biomedical ontology harmonization.
    Uribe GA; Lopez DM; Blobel B
    Stud Health Technol Inform; 2014; 200():62-8. PubMed ID: 24851964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Compact Coevolutionary Algorithm for Matching Biomedical Ontologies.
    Xue X; Chen J; Chen J; Chen D
    Comput Intell Neurosci; 2018; 2018():2309587. PubMed ID: 30405706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Applications of Interoperable Biomedical Ontologies for Integrative Data and Knowledge Representation and Multiscale Modeling in Systems Medicine.
    He Y
    Methods Mol Biol; 2022; 2486():233-244. PubMed ID: 35437726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.