BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22962358)

  • 1. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungus Botrytis cinerea.
    Cotoras M; Castro P; Vivanco H; Melo R; Mendoza L
    Mycologia; 2013; 105(1):28-33. PubMed ID: 22962358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of bionic fungicide 2-allylphenol on Botrytis cinerea (Pers. ex Fr.) in vitro.
    Gong S; Hao J; Xia Y; Liu X; Li J
    Pest Manag Sci; 2009 Dec; 65(12):1337-43. PubMed ID: 19685448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions.
    Cheng CH; Yang CA; Peng KC
    Phytopathology; 2012 Nov; 102(11):1054-63. PubMed ID: 22734558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus.
    Wang X; Wang Y; Zhou Y; Wei X
    Mycologia; 2014; 106(5):881-8. PubMed ID: 24895430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea.
    Calderón CE; Rotem N; Harris R; Vela-Corcía D; Levy M
    Mol Plant Pathol; 2019 Apr; 20(4):562-574. PubMed ID: 30537338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes.
    Saito S; Suzuki S; Takayanagi T
    Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V; Danit LV; Siewers V; Schulze-Gronover C; Tudzynski P; Tudzynski B; Sharon A
    Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Honokiol suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing autophagic activities and apoptosis.
    Ma D; Cui X; Zhang Z; Li B; Xu Y; Tian S; Chen T
    Food Microbiol; 2020 Jun; 88():103411. PubMed ID: 31997759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections.
    Liu HM; Guo JH; Cheng YJ; Liu P; Long CA; Deng BX
    Lett Appl Microbiol; 2010 Sep; 51(3):258-63. PubMed ID: 20633212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.
    Arbelet D; Malfatti P; Simond-Côte E; Fontaine T; Desquilbet L; Expert D; Kunz C; Soulié MC
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1324-34. PubMed ID: 20672878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea.
    Marschall R; Schumacher J; Siegmund U; Tudzynski P
    Fungal Genet Biol; 2016 May; 90():12-22. PubMed ID: 26988904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the fungitoxic activity on Botrytis cinerea of the aristolochic acids I and II.
    Melo R; Sanhueza L; Mendoza L; Cotoras M
    Lett Appl Microbiol; 2019 Jan; 68(1):48-55. PubMed ID: 30325521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen.
    El Oirdi M; Trapani A; Bouarab K
    Environ Microbiol; 2010 Jan; 12(1):239-53. PubMed ID: 19799622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodynamic inactivation of Botrytis cinerea by an anionic porphyrin: an alternative pest management of grapevine.
    Ambrosini V; Issawi M; Sol V; Riou C
    Sci Rep; 2020 Oct; 10(1):17438. PubMed ID: 33060706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea.
    Sui Y; Ma Z; Meng X
    J Sci Food Agric; 2019 Mar; 99(5):2622-2628. PubMed ID: 30417388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal activity and biotransformation of diisophorone by Botrytis cinerea.
    Daoubi M; Deligeorgopoulou A; Macías-Sánchez AJ; Hernández-Galán R; Hitchcock PB; Hanson JR; Collado IG
    J Agric Food Chem; 2005 Jul; 53(15):6035-9. PubMed ID: 16028992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin Induces Oxidative Stress in
    Hua C; Kai K; Bi W; Shi W; Liu Y; Zhang D
    J Agric Food Chem; 2019 Jul; 67(28):7968-7976. PubMed ID: 31062982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.