These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 22962365)
1. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Hashimoto H; Hong S; Bhagwat AS; Zhang X; Cheng X Nucleic Acids Res; 2012 Nov; 40(20):10203-14. PubMed ID: 22962365 [TBL] [Abstract][Full Text] [Related]
2. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Hashimoto H; Zhang X; Cheng X Nucleic Acids Res; 2012 Sep; 40(17):8276-84. PubMed ID: 22740654 [TBL] [Abstract][Full Text] [Related]
3. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106 [TBL] [Abstract][Full Text] [Related]
4. Structural and mutation studies of two DNA demethylation related glycosylases: MBD4 and TDG. Hashimoto H Biophysics (Nagoya-shi); 2014; 10():63-8. PubMed ID: 27493500 [TBL] [Abstract][Full Text] [Related]
5. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Malik SS; Coey CT; Varney KM; Pozharski E; Drohat AC Nucleic Acids Res; 2015 Oct; 43(19):9541-52. PubMed ID: 26358812 [TBL] [Abstract][Full Text] [Related]
6. Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant. Hashimoto H; Zhang X; Cheng X J Mol Biol; 2013 Mar; 425(6):971-6. PubMed ID: 23337108 [TBL] [Abstract][Full Text] [Related]
7. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Szulik MW; Pallan PS; Nocek B; Voehler M; Banerjee S; Brooks S; Joachimiak A; Egli M; Eichman BF; Stone MP Biochemistry; 2015 Feb; 54(5):1294-305. PubMed ID: 25632825 [TBL] [Abstract][Full Text] [Related]
8. Weakened N3 Hydrogen Bonding by 5-Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing Stability. Dai Q; Sanstead PJ; Peng CS; Han D; He C; Tokmakoff A ACS Chem Biol; 2016 Feb; 11(2):470-7. PubMed ID: 26641274 [TBL] [Abstract][Full Text] [Related]
9. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. Maiti A; Drohat AC J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836 [TBL] [Abstract][Full Text] [Related]
10. Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase. Pidugu LS; Flowers JW; Coey CT; Pozharski E; Greenberg MM; Drohat AC Biochemistry; 2016 Nov; 55(45):6205-6208. PubMed ID: 27805810 [TBL] [Abstract][Full Text] [Related]
12. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Zhang L; Lu X; Lu J; Liang H; Dai Q; Xu GL; Luo C; Jiang H; He C Nat Chem Biol; 2012 Feb; 8(4):328-30. PubMed ID: 22327402 [TBL] [Abstract][Full Text] [Related]
13. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
14. Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH. Hashimoto H; Zhang X; Cheng X DNA Repair (Amst); 2013 Jul; 12(7):535-40. PubMed ID: 23680598 [TBL] [Abstract][Full Text] [Related]
15. [Oxidation and deamination of nucleobases as an epigenetic tool]. Guz J; Jurgowiak M; Oliński R Postepy Hig Med Dosw (Online); 2012 May; 66():275-86. PubMed ID: 22706113 [TBL] [Abstract][Full Text] [Related]
16. Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Onodera A; González-Avalos E; Lio CJ; Georges RO; Bellacosa A; Nakayama T; Rao A Genome Biol; 2021 Jun; 22(1):186. PubMed ID: 34158086 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of the excised base release in thymine DNA glycosylase during DNA repair process. Da LT; Shi Y; Ning G; Yu J Nucleic Acids Res; 2018 Jan; 46(2):568-581. PubMed ID: 29253232 [TBL] [Abstract][Full Text] [Related]
18. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016 [TBL] [Abstract][Full Text] [Related]
19. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA. Maiti A; Michelson AZ; Armwood CJ; Lee JK; Drohat AC J Am Chem Soc; 2013 Oct; 135(42):15813-22. PubMed ID: 24063363 [TBL] [Abstract][Full Text] [Related]
20. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]