These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 22962365)
61. Detection of mismatched 5-hydroxymethyluracil in DNA by selective chemical labeling. Yu M; Song CX; He C Methods; 2015 Jan; 72():16-20. PubMed ID: 25462560 [TBL] [Abstract][Full Text] [Related]
62. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Weber AR; Krawczyk C; Robertson AB; Kuśnierczyk A; Vågbø CB; Schuermann D; Klungland A; Schär P Nat Commun; 2016 Mar; 7():10806. PubMed ID: 26932196 [TBL] [Abstract][Full Text] [Related]
63. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. Lu X; Song CX; Szulwach K; Wang Z; Weidenbacher P; Jin P; He C J Am Chem Soc; 2013 Jun; 135(25):9315-7. PubMed ID: 23758547 [TBL] [Abstract][Full Text] [Related]
64. Thymine DNA glycosylase. Hardeland U; Bentele M; Lettieri T; Steinacher R; Jiricny J; Schär P Prog Nucleic Acid Res Mol Biol; 2001; 68():235-53. PubMed ID: 11554300 [TBL] [Abstract][Full Text] [Related]
65. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cortellino S; Xu J; Sannai M; Moore R; Caretti E; Cigliano A; Le Coz M; Devarajan K; Wessels A; Soprano D; Abramowitz LK; Bartolomei MS; Rambow F; Bassi MR; Bruno T; Fanciulli M; Renner C; Klein-Szanto AJ; Matsumoto Y; Kobi D; Davidson I; Alberti C; Larue L; Bellacosa A Cell; 2011 Jul; 146(1):67-79. PubMed ID: 21722948 [TBL] [Abstract][Full Text] [Related]
66. Guanine- 5-carboxylcytosine base pairs mimic mismatches during DNA replication. Shibutani T; Ito S; Toda M; Kanao R; Collins LB; Shibata M; Urabe M; Koseki H; Masuda Y; Swenberg JA; Masutani C; Hanaoka F; Iwai S; Kuraoka I Sci Rep; 2014 Jun; 4():5220. PubMed ID: 24910358 [TBL] [Abstract][Full Text] [Related]
67. Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics. Neri F; Incarnato D; Krepelova A; Rapelli S; Anselmi F; Parlato C; Medana C; Dal Bello F; Oliviero S Cell Rep; 2015 Feb; 10(5):674-683. PubMed ID: 25660018 [TBL] [Abstract][Full Text] [Related]
68. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. McLaughlin D; Coey CT; Yang WC; Drohat AC; Matunis MJ J Biol Chem; 2016 Apr; 291(17):9014-24. PubMed ID: 26917720 [TBL] [Abstract][Full Text] [Related]
69. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG. Morgan MT; Bennett MT; Drohat AC J Biol Chem; 2007 Sep; 282(38):27578-86. PubMed ID: 17602166 [TBL] [Abstract][Full Text] [Related]
70. Uracil-DNA Glycosylase UNG Promotes Tet-mediated DNA Demethylation. Xue JH; Xu GF; Gu TP; Chen GD; Han BB; Xu ZM; Bjørås M; Krokan HE; Xu GL; Du YR J Biol Chem; 2016 Jan; 291(2):731-8. PubMed ID: 26620559 [TBL] [Abstract][Full Text] [Related]
71. Base-flipping dynamics from an intrahelical to an extrahelical state exerted by thymine DNA glycosylase during DNA repair process. Da LT; Yu J Nucleic Acids Res; 2018 Jun; 46(11):5410-5425. PubMed ID: 29762710 [TBL] [Abstract][Full Text] [Related]
72. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. Boland MJ; Christman JK J Mol Biol; 2008 Jun; 379(3):492-504. PubMed ID: 18452947 [TBL] [Abstract][Full Text] [Related]
73. TET-mediated active DNA demethylation: mechanism, function and beyond. Wu X; Zhang Y Nat Rev Genet; 2017 Sep; 18(9):517-534. PubMed ID: 28555658 [TBL] [Abstract][Full Text] [Related]
74. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. Bennett MT; Rodgers MT; Hebert AS; Ruslander LE; Eisele L; Drohat AC J Am Chem Soc; 2006 Sep; 128(38):12510-9. PubMed ID: 16984202 [TBL] [Abstract][Full Text] [Related]
75. Rapid excision of oxidized adenine by human thymine DNA glycosylase. Servius HW; Pidugu LS; Sherman ME; Drohat AC J Biol Chem; 2023 Jan; 299(1):102756. PubMed ID: 36460098 [TBL] [Abstract][Full Text] [Related]
76. Measurement of deaminated cytosine adducts in DNA using a novel hybrid thymine DNA glycosylase. Hsu CW; Sowers ML; Baljinnyam T; Herring JL; Hackfeld LC; Tang H; Zhang K; Sowers LC J Biol Chem; 2022 Mar; 298(3):101638. PubMed ID: 35085553 [TBL] [Abstract][Full Text] [Related]
77. Base excision repair of tandem modifications in a methylated CpG dinucleotide. Sassa A; Çağlayan M; Dyrkheeva NS; Beard WA; Wilson SH J Biol Chem; 2014 May; 289(20):13996-4008. PubMed ID: 24695738 [TBL] [Abstract][Full Text] [Related]
78. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. van der Wijst MG; Venkiteswaran M; Chen H; Xu GL; Plösch T; Rots MG Epigenetics; 2015; 10(8):671-6. PubMed ID: 26098813 [TBL] [Abstract][Full Text] [Related]
79. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity. Smet-Nocca C; Wieruszeski JM; Léger H; Eilebrecht S; Benecke A BMC Biochem; 2011 Feb; 12():4. PubMed ID: 21284855 [TBL] [Abstract][Full Text] [Related]
80. Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair. Li YQ; Zhou PZ; Zheng XD; Walsh CP; Xu GL Nucleic Acids Res; 2007; 35(2):390-400. PubMed ID: 17175537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]