BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22962467)

  • 1. LocTree2 predicts localization for all domains of life.
    Goldberg T; Hamp T; Rost B
    Bioinformatics; 2012 Sep; 28(18):i458-i465. PubMed ID: 22962467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LocTree3 prediction of localization.
    Goldberg T; Hecht M; Hamp T; Karl T; Yachdav G; Ahmed N; Altermann U; Angerer P; Ansorge S; Balasz K; Bernhofer M; Betz A; Cizmadija L; Do KT; Gerke J; Greil R; Joerdens V; Hastreiter M; Hembach K; Herzog M; Kalemanov M; Kluge M; Meier A; Nasir H; Neumaier U; Prade V; Reeb J; Sorokoumov A; Troshani I; Vorberg S; Waldraff S; Zierer J; Nielsen H; Rost B
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W350-5. PubMed ID: 24848019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.
    Yu NY; Wagner JR; Laird MR; Melli G; Rey S; Lo R; Dao P; Sahinalp SC; Ester M; Foster LJ; Brinkman FS
    Bioinformatics; 2010 Jul; 26(13):1608-15. PubMed ID: 20472543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSORTdb--an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea.
    Yu NY; Laird MR; Spencer C; Brinkman FS
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D241-4. PubMed ID: 21071402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures.
    Peabody MA; Laird MR; Vlasschaert C; Lo R; Brinkman FS
    Nucleic Acids Res; 2016 Jan; 44(D1):D663-8. PubMed ID: 26602691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria.
    Gardy JL; Spencer C; Wang K; Ester M; Tusnády GE; Simon I; Hua S; deFays K; Lambert C; Nakai K; Brinkman FS
    Nucleic Acids Res; 2003 Jul; 31(13):3613-7. PubMed ID: 12824378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis.
    Gardy JL; Laird MR; Chen F; Rey S; Walsh CJ; Ester M; Brinkman FS
    Bioinformatics; 2005 Mar; 21(5):617-23. PubMed ID: 15501914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MemLoci: predicting subcellular localization of membrane proteins in eukaryotes.
    Pierleoni A; Martelli PL; Casadio R
    Bioinformatics; 2011 May; 27(9):1224-30. PubMed ID: 21367869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed prediction of protein sub-nuclear localization.
    Littmann M; Goldberg T; Seitz S; Bodén M; Rost B
    BMC Bioinformatics; 2019 Apr; 20(1):205. PubMed ID: 31014229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins.
    Savojardo C; Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2015 Oct; 31(20):3269-75. PubMed ID: 26079349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LOCnet and LOCtarget: sub-cellular localization for structural genomics targets.
    Nair R; Rost B
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W517-21. PubMed ID: 15215440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LedPred: an R/bioconductor package to predict regulatory sequences using support vector machines.
    Seyres D; Darbo E; Perrin L; Herrmann C; González A
    Bioinformatics; 2016 Apr; 32(7):1091-3. PubMed ID: 26628586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions.
    Yu CS; Lin CJ; Hwang JK
    Protein Sci; 2004 May; 13(5):1402-6. PubMed ID: 15096640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of subcellular localization.
    Nakai K; Horton P
    Methods Mol Biol; 2007; 390():429-66. PubMed ID: 17951705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic survey of mini-proteins in bacteria and archaea.
    Wang F; Xiao J; Pan L; Yang M; Zhang G; Jin S; Yu J
    PLoS One; 2008; 3(12):e4027. PubMed ID: 19107199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Support vector machine approach for protein subcellular localization prediction.
    Hua S; Sun Z
    Bioinformatics; 2001 Aug; 17(8):721-8. PubMed ID: 11524373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pooled assembly of marine metagenomic datasets: enriching annotation through chimerism.
    Magasin JD; Gerloff DL
    Bioinformatics; 2015 Feb; 31(3):311-7. PubMed ID: 25306399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics analysis of disordered proteins in prokaryotes.
    Pavlović-Lažetić GM; Mitić NS; Kovačević JJ; Obradović Z; Malkov SN; Beljanski MV
    BMC Bioinformatics; 2011 Mar; 12():66. PubMed ID: 21366926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.