These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22962471)

  • 41. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conserved core substructures in the overlay of protein-ligand complexes.
    Finzel BC; Akavaram R; Ragipindi A; Van Voorst JR; Cahn M; Davis ME; Pokross ME; Sheriff S; Baldwin ET
    J Chem Inf Model; 2011 Aug; 51(8):1931-41. PubMed ID: 21736376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AClAP, Autonomous hierarchical agglomerative Cluster Analysis based protocol to partition conformational datasets.
    Bottegoni G; Rocchia W; Recanatini M; Cavalli A
    Bioinformatics; 2006 Jul; 22(14):e58-65. PubMed ID: 16873522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rationalizing tight ligand binding through cooperative interaction networks.
    Kuhn B; Fuchs JE; Reutlinger M; Stahl M; Taylor NR
    J Chem Inf Model; 2011 Dec; 51(12):3180-98. PubMed ID: 22087588
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information.
    Zhang W; Chen Y; Li D
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186828
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drug Target Identification with Machine Learning: How to Choose Negative Examples.
    Najm M; Azencott CA; Playe B; Stoven V
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A hybrid ensemble-based technique for predicting drug-target interactions.
    Sachdev K; Gupta MK
    Chem Biol Drug Des; 2020 Dec; 96(6):1447-1455. PubMed ID: 32638508
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NMR screening in drug discovery.
    Moore JM
    Curr Opin Biotechnol; 1999 Feb; 10(1):54-8. PubMed ID: 10047510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.
    Weill N; Rognan D
    J Chem Inf Model; 2009 Apr; 49(4):1049-62. PubMed ID: 19301874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand-binding site prediction of proteins based on known fragment-fragment interactions.
    Kasahara K; Kinoshita K; Takagi T
    Bioinformatics; 2010 Jun; 26(12):1493-9. PubMed ID: 20472546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting.
    Mahmud SMH; Chen W; Meng H; Jahan H; Liu Y; Hasan SMM
    Anal Biochem; 2020 Jan; 589():113507. PubMed ID: 31734254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drug-target interaction prediction via class imbalance-aware ensemble learning.
    Ezzat A; Wu M; Li XL; Kwoh CK
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):509. PubMed ID: 28155697
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures.
    Strömbergsson H; Kryshtafovych A; Prusis P; Fidelis K; Wikberg JE; Komorowski J; Hvidsten TR
    Proteins; 2006 Nov; 65(3):568-79. PubMed ID: 16948162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. kNNsim: k-nearest neighbors similarity with genetic algorithm features optimization enhances the prediction of activity classes for small molecules.
    Plewczynski D
    J Mol Model; 2009 Jun; 15(6):591-6. PubMed ID: 18663491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach.
    Liu X; Ouyang S; Yu B; Liu Y; Huang K; Gong J; Zheng S; Li Z; Li H; Jiang H
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W609-14. PubMed ID: 20430828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures.
    Cao DS; Liu S; Xu QS; Lu HM; Huang JH; Hu QN; Liang YZ
    Anal Chim Acta; 2012 Nov; 752():1-10. PubMed ID: 23101647
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using novel descriptor accounting for ligand-receptor interactions to define and visually explore biologically relevant chemical space.
    Rabal O; Oyarzabal J
    J Chem Inf Model; 2012 May; 52(5):1086-102. PubMed ID: 22486368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic Exploration of Binding Modes of Ligands on Drug Targets.
    Hetényi C; Bálint M
    Methods Mol Biol; 2020; 2112():107-121. PubMed ID: 32006281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust ligand-based modeling of the biological targets of known drugs.
    Cleves AE; Jain AN
    J Med Chem; 2006 May; 49(10):2921-38. PubMed ID: 16686535
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.