These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22962493)

  • 1. PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis.
    Ng S; Collisson EA; Sokolov A; Goldstein T; Gonzalez-Perez A; Lopez-Bigas N; Benz C; Haussler D; Stuart JM
    Bioinformatics; 2012 Sep; 28(18):i640-i646. PubMed ID: 22962493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM.
    Vaske CJ; Benz SC; Sanborn JZ; Earl D; Szeto C; Zhu J; Haussler D; Stuart JM
    Bioinformatics; 2010 Jun; 26(12):i237-45. PubMed ID: 20529912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring the paths of somatic evolution in cancer.
    Misra N; Szczurek E; Vingron M
    Bioinformatics; 2014 Sep; 30(17):2456-63. PubMed ID: 24812340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE).
    Paull EO; Carlin DE; Niepel M; Sorger PK; Haussler D; Stuart JM
    Bioinformatics; 2013 Nov; 29(21):2757-64. PubMed ID: 23986566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A weighted exact test for mutually exclusive mutations in cancer.
    Leiserson MD; Reyna MA; Raphael BJ
    Bioinformatics; 2016 Sep; 32(17):i736-i745. PubMed ID: 27587696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
    Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2013 Sep; 29(18):2238-44. PubMed ID: 23884480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types.
    Park S; Kim SJ; Yu D; Peña-Llopis S; Gao J; Park JS; Chen B; Norris J; Wang X; Chen M; Kim M; Yong J; Wardak Z; Choe K; Story M; Starr T; Cheong JH; Hwang TH
    Bioinformatics; 2016 Jun; 32(11):1643-51. PubMed ID: 26635139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the role of low-frequency mutated genes in breast cancer.
    Lusito E; Felice B; D'Ario G; Ogier A; Montani F; Di Fiore PP; Bianchi F
    Bioinformatics; 2019 Jan; 35(1):36-46. PubMed ID: 29961866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of expression of the p16 tumor suppressor gene is more frequent in advanced ovarian cancers lacking p53 mutations.
    Havrilesky LJ; Alvarez AA; Whitaker RS; Marks JR; Berchuck A
    Gynecol Oncol; 2001 Dec; 83(3):491-500. PubMed ID: 11733961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRODIGY: personalized prioritization of driver genes.
    Dinstag G; Shamir R
    Bioinformatics; 2020 Mar; 36(6):1831-1839. PubMed ID: 31681944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical HotNet: identifying hierarchies of altered subnetworks.
    Reyna MA; Leiserson MDM; Raphael BJ
    Bioinformatics; 2018 Sep; 34(17):i972-i980. PubMed ID: 30423088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling cancer progression using Mutual Hazard Networks.
    Schill R; Solbrig S; Wettig T; Spang R
    Bioinformatics; 2020 Jan; 36(1):241-249. PubMed ID: 31250881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated network analysis identifies core pathways in glioblastoma.
    Cerami E; Demir E; Schultz N; Taylor BS; Sander C
    PLoS One; 2010 Feb; 5(2):e8918. PubMed ID: 20169195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.
    Poole W; Leinonen K; Shmulevich I; Knijnenburg TA; Bernard B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005347. PubMed ID: 28170390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistically identifying tumor suppressors and oncogenes from pan-cancer genome-sequencing data.
    Kumar RD; Searleman AC; Swamidass SJ; Griffith OL; Bose R
    Bioinformatics; 2015 Nov; 31(22):3561-8. PubMed ID: 26209800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing predictive biomarkers for gene essentiality in cancer cells with mRNA expression data and DNA copy number profile.
    Guan Y; Li T; Zhang H; Zhu F; Omenn GS
    Bioinformatics; 2018 Dec; 34(23):3975-3982. PubMed ID: 29912344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIRAGAA--a methodology for finding coordinated effects of microRNA expression changes and genome aberrations in cancer.
    Gaire RK; Bailey J; Bearfoot J; Campbell IG; Stuckey PJ; Haviv I
    Bioinformatics; 2010 Jan; 26(2):161-7. PubMed ID: 19933823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.