These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22962510)

  • 81. Maternally derived hormones, neurosteroids and the development of behaviour.
    Mouton JC; Duckworth RA
    Proc Biol Sci; 2021 Jan; 288(1943):20202467. PubMed ID: 33499795
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Fitness consequences of early life conditions and maternal size effects in a freshwater top predator.
    Vindenes Y; Langangen Ø; Winfield IJ; Vøllestad LA
    J Anim Ecol; 2016 May; 85(3):692-704. PubMed ID: 26781671
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history.
    Marshall DJ
    Ecology; 2008 Feb; 89(2):418-27. PubMed ID: 18409431
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Predator community and resource use jointly modulate the inducible defense response in body height of crucian carp.
    de Meo I; Østbye K; Kahilainen KK; Hayden B; Fagertun CHH; Poléo ABS
    Ecol Evol; 2021 Mar; 11(5):2072-2085. PubMed ID: 33717443
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Environmental oestrogens cause predation-induced population decline in a freshwater fish.
    Rearick DC; Ward J; Venturelli P; Schoenfuss H
    R Soc Open Sci; 2018 Oct; 5(10):181065. PubMed ID: 30473849
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mothers determine offspring size in response to own juvenile growth conditions.
    Taborsky B
    Biol Lett; 2006 Jun; 2(2):225-8. PubMed ID: 17148368
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Who dares, learns: chemical inspection behaviour and acquired predator recognition in a characin fish.
    Brown GE; Godin JG
    Anim Behav; 1999 Feb; 57(2):475-481. PubMed ID: 10049488
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Predation risk differentially affects aphid morphotypes: impacts on prey behavior, fecundity and transgenerational dispersal morphology.
    Hermann SL; Bird SA; Ellis DR; Landis DA
    Oecologia; 2021 Oct; 197(2):411-419. PubMed ID: 34542673
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study.
    Nunes AL; Richter-Boix A; Laurila A; Rebelo R
    Oecologia; 2013 Jan; 171(1):115-27. PubMed ID: 22707039
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Can pregnant lizards adjust their offspring phenotypes to environmental conditions?
    Shine R; Downes SJ
    Oecologia; 1999 Apr; 119(1):1-8. PubMed ID: 28308149
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The relationship between maternal phenotype and offspring quality: do older mothers really produce the best offspring?
    Marshall DJ; Heppell SS; Munch SB; Warner RR
    Ecology; 2010 Oct; 91(10):2862-73. PubMed ID: 21058547
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The demographic and life-history costs of fear: Trait-mediated effects of threat of predation on
    Ower GD; Juliano SA
    Ecol Evol; 2019 Apr; 9(7):3794-3806. PubMed ID: 31015967
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fitness and community consequences of avoiding multiple predators.
    Peckarsky BL; McIntosh AR
    Oecologia; 1998 Feb; 113(4):565-576. PubMed ID: 28308037
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Influences of climatic and social environment on variable maternal allocation among offspring in Alpine marmots.
    Plard F; Chamiot-Clerc B; Cohas A
    J Anim Ecol; 2021 Feb; 90(2):471-482. PubMed ID: 33155282
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Limited effects of the maternal rearing environment on the behaviour and fitness of an insect herbivore and its natural enemy.
    Slater JM; Gilbert L; Johnson D; Karley AJ
    PLoS One; 2019; 14(1):e0209965. PubMed ID: 30633753
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effects of size on predation risk, behavioural response to fish, and cost of reduced feeding in larval Ischnura verticalis (Coenagrionidae: Odonata).
    Dixon SM; Baker RL
    Oecologia; 1988 Jul; 76(2):200-205. PubMed ID: 28312197
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The relationship between direct predation and antipredator responses: a test with multiple predators and multiple prey.
    Creel S; Dröge E; M'soka J; Smit D; Becker M; Christianson D; Schuette P
    Ecology; 2017 Aug; 98(8):2081-2092. PubMed ID: 28475209
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Error management theory and the adaptive significance of transgenerational maternal-stress effects on offspring phenotype.
    Sheriff MJ; Dantzer B; Love OP; Orrock JL
    Ecol Evol; 2018 Jul; 8(13):6473-6482. PubMed ID: 30038749
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Consistent individual differences in fathering in threespined stickleback
    Stein LR; Bell AM
    Curr Zool; 2012 Feb; 58(1):45-52. PubMed ID: 24729781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.