These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 22962660)
21. A nitrogen-doped polyaniline carbon with high electrocatalytic activity and stability for the oxygen reduction reaction in fuel cells. Zhong H; Zhang H; Xu Z; Tang Y; Mao J ChemSusChem; 2012 Sep; 5(9):1698-702. PubMed ID: 22890976 [TBL] [Abstract][Full Text] [Related]
22. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. Martinez U; Dumont JH; Holby EF; Artyushkova K; Purdy GM; Singh A; Mack NH; Atanassov P; Cullen DA; More KL; Chhowalla M; Zelenay P; Dattelbaum AM; Mohite AD; Gupta G Sci Adv; 2016 Mar; 2(3):e1501178. PubMed ID: 27034981 [TBL] [Abstract][Full Text] [Related]
23. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. Choi CH; Park SH; Woo SI ACS Nano; 2012 Aug; 6(8):7084-91. PubMed ID: 22769428 [TBL] [Abstract][Full Text] [Related]
24. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Zhang H; Wang Y; Wang D; Li Y; Liu X; Liu P; Yang H; An T; Tang Z; Zhao H Small; 2014 Aug; 10(16):3371-8. PubMed ID: 24729520 [TBL] [Abstract][Full Text] [Related]
25. Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction. Wu L; Feng H; Liu M; Zhang K; Li J Nanoscale; 2013 Nov; 5(22):10839-43. PubMed ID: 24089043 [TBL] [Abstract][Full Text] [Related]
26. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Li Y; Zhou W; Wang H; Xie L; Liang Y; Wei F; Idrobo JC; Pennycook SJ; Dai H Nat Nanotechnol; 2012 May; 7(6):394-400. PubMed ID: 22635099 [TBL] [Abstract][Full Text] [Related]
27. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. Sheng ZH; Shao L; Chen JJ; Bao WJ; Wang FB; Xia XH ACS Nano; 2011 Jun; 5(6):4350-8. PubMed ID: 21574601 [TBL] [Abstract][Full Text] [Related]
28. The reaction pathways of the oxygen reduction reaction on IrN Liu S; Cheng L; Li K; Wang Y; Yang Y; Wu Z J Mol Graph Model; 2018 Mar; 80():293-298. PubMed ID: 29414048 [TBL] [Abstract][Full Text] [Related]
29. Highly Functional Bioinspired Fe/N/C Oxygen Reduction Reaction Catalysts: Structure-Regulating Oxygen Sorption. Yao Y; You Y; Zhang G; Liu J; Sun H; Zou Z; Sun S ACS Appl Mater Interfaces; 2016 Mar; 8(10):6464-71. PubMed ID: 26902179 [TBL] [Abstract][Full Text] [Related]
30. Ultrathin graphitic C3 N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Tian J; Liu Q; Asiri AM; Alamry KA; Sun X ChemSusChem; 2014 Aug; 7(8):2125-30. PubMed ID: 24823866 [TBL] [Abstract][Full Text] [Related]
31. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. Zhao Y; Watanabe K; Hashimoto K J Am Chem Soc; 2012 Dec; 134(48):19528-31. PubMed ID: 23151016 [TBL] [Abstract][Full Text] [Related]
32. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles. Ye W; Ho DM; Friedle S; Palluccio TD; Rybak-Akimova EV Inorg Chem; 2012 May; 51(9):5006-21. PubMed ID: 22534174 [TBL] [Abstract][Full Text] [Related]
33. Reaction of oxygen with 6-hydroxydopamine catalyzed by Cu, Fe, Mn, and V complexes: identification of a thermodynamic window for effective metal catalysis. Bandy B; Walter PB; Moon J; Davison AJ Arch Biochem Biophys; 2001 May; 389(1):22-30. PubMed ID: 11370668 [TBL] [Abstract][Full Text] [Related]
34. Acidic-functionalized ionic liquid as an efficient, green and reusable catalyst for hetero-Michael addition of nitrogen, sulfur and oxygen nucleophiles to α,β-unsaturated ketones. Han F; Yang L; Li Z; Xia C Org Biomol Chem; 2012 Jan; 10(2):346-54. PubMed ID: 22076060 [TBL] [Abstract][Full Text] [Related]
35. Metal-free nitrogen-containing carbon nanotubes prepared from triazole and tetrazole derivatives show high electrocatalytic activity towards the oxygen reduction reaction in alkaline media. Morozan A; Jégou P; Pinault M; Campidelli S; Jousselme B; Palacin S ChemSusChem; 2012 Apr; 5(4):647-51. PubMed ID: 22389330 [TBL] [Abstract][Full Text] [Related]
37. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. Jia Q; Ramaswamy N; Hafiz H; Tylus U; Strickland K; Wu G; Barbiellini B; Bansil A; Holby EF; Zelenay P; Mukerjee S ACS Nano; 2015 Dec; 9(12):12496-505. PubMed ID: 26566192 [TBL] [Abstract][Full Text] [Related]
38. One-pot synthesis of pyrrolo[1,2-a]quinoxaline derivatives via iron-promoted aryl nitro reduction and aerobic oxidation of alcohols. Pereira Mde F; Thiéry V Org Lett; 2012 Sep; 14(18):4754-7. PubMed ID: 22971137 [TBL] [Abstract][Full Text] [Related]
39. A density function theory study on the NO reduction on nitrogen doped graphene. Zhang X; Lu Z; Tang Y; Fu Z; Ma D; Yang Z Phys Chem Chem Phys; 2014 Oct; 16(38):20561-9. PubMed ID: 25156103 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Carbajosa S; Malki M; Caillard R; Lopez MF; Palomares FJ; Martín-Gago JA; Rodríguez N; Amils R; Fernández VM; De Lacey AL Biosens Bioelectron; 2010 Oct; 26(2):877-80. PubMed ID: 20678913 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]