These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 22962660)
41. One-step synthesis of graphene/polyallylamine-Au nanocomposites and their electrocatalysis toward oxygen reduction. Zhang Q; Ren Q; Miao Y; Yuan J; Wang K; Li F; Han D; Niu L Talanta; 2012 Jan; 89():391-5. PubMed ID: 22284507 [TBL] [Abstract][Full Text] [Related]
42. Chemically-modified graphenes for oxidation of DNA bases: analytical parameters. Goh MS; Bonanni A; Ambrosi A; Sofer Z; Pumera M Analyst; 2011 Nov; 136(22):4738-44. PubMed ID: 21956120 [TBL] [Abstract][Full Text] [Related]
43. Nitrogen-enriched core-shell structured Fe/Fe(3)C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Wen Z; Ci S; Zhang F; Feng X; Cui S; Mao S; Luo S; He Z; Chen J Adv Mater; 2012 Mar; 24(11):1399-404. PubMed ID: 22311518 [TBL] [Abstract][Full Text] [Related]
44. One-pot Synthesis of Nitrogen and Phosphorus Co-doped Graphene and Its Use as High-performance Electrocatalyst for Oxygen Reduction Reaction. Dong L; Hu C; Huang X; Chen N; Qu L Chem Asian J; 2015 Dec; 10(12):2609-14. PubMed ID: 26305045 [TBL] [Abstract][Full Text] [Related]
45. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400 [TBL] [Abstract][Full Text] [Related]
46. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. Kim J; Lee Y; Sun S J Am Chem Soc; 2010 Apr; 132(14):4996-7. PubMed ID: 20297818 [TBL] [Abstract][Full Text] [Related]
48. Chemically modified ribbon edge stimulated H2 dissociation: a first-principles computational study. Liao T; Sun C; Sun Z; Du A; Smith S Phys Chem Chem Phys; 2013 Jun; 15(21):8054-7. PubMed ID: 23632601 [TBL] [Abstract][Full Text] [Related]
49. Myoglobin as an efficient electrocatalyst for nitromethane reduction. Boutros J; Bayachou M Inorg Chem; 2004 Jun; 43(13):3847-53. PubMed ID: 15206865 [TBL] [Abstract][Full Text] [Related]
50. Metal nitride/graphene nanohybrids: general synthesis and multifunctional titanium nitride/graphene electrocatalyst. Wen Z; Cui S; Pu H; Mao S; Yu K; Feng X; Chen J Adv Mater; 2011 Dec; 23(45):5445-50. PubMed ID: 22012879 [TBL] [Abstract][Full Text] [Related]
51. Iron-catalyzed N-alkylation of azoles via oxidation of C-H bond adjacent to an oxygen atom. Pan S; Liu J; Li H; Wang Z; Guo X; Li Z Org Lett; 2010 May; 12(9):1932-5. PubMed ID: 20377238 [TBL] [Abstract][Full Text] [Related]
52. Water as an oxygen source in the generation of mononuclear nonheme iron(IV) oxo complexes. Lee YM; Dhuri SN; Sawant SC; Cho J; Kubo M; Ogura T; Fukuzumi S; Nam W Angew Chem Int Ed Engl; 2009; 48(10):1803-6. PubMed ID: 19142924 [TBL] [Abstract][Full Text] [Related]
53. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Liu ZW; Peng F; Wang HJ; Yu H; Zheng WX; Yang J Angew Chem Int Ed Engl; 2011 Mar; 50(14):3257-61. PubMed ID: 21381161 [No Abstract] [Full Text] [Related]
54. Thermally induced stoichiometric and catalytic O-atom transfer by a non-heme iron(III)-nitro complex: first example of reversible [Fe-NO]7<-->FeIII-NO2 transformation in the presence of dioxygen. Patra AK; Afshar RK; Rowland JM; Olmstead MM; Mascharak PK Angew Chem Int Ed Engl; 2003 Sep; 42(37):4517-21. PubMed ID: 14520754 [No Abstract] [Full Text] [Related]
55. Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of Antioxidant Capacity. Hui KH; Pumera M; Bonanni A Chemistry; 2015 Aug; 21(33):11793-8. PubMed ID: 26134061 [TBL] [Abstract][Full Text] [Related]
56. Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater. Parot S; Vandecandelaere I; Cournet A; Délia ML; Vandamme P; Bergé M; Roques C; Bergel A Bioresour Technol; 2011 Jan; 102(1):304-11. PubMed ID: 20673715 [TBL] [Abstract][Full Text] [Related]
57. Studies of iron(II) and iron(III) complexes with fac-N2O, cis-N2O2 and N2O3 donor ligands: models for the 2-His 1-carboxylate motif of non-heme iron monooxygenases. Cappillino PJ; Miecznikowski JR; Tyler LA; Tarves PC; McNally JS; Lo W; Kasibhatla BS; Krzyaniak MD; McCracken J; Wang F; Armstrong WH; Caradonna JP Dalton Trans; 2012 May; 41(18):5662-77. PubMed ID: 22434362 [TBL] [Abstract][Full Text] [Related]
58. Biomimetic hydrocarbon oxidation catalyzed by nonheme iron(III) complexes with peracids: evidence for an Fe(V)=O species. Lee SH; Han JH; Kwak H; Lee SJ; Lee EY; Kim HJ; Lee JH; Bae C; Lee SN; Kim Y; Kim C Chemistry; 2007; 13(33):9393-8. PubMed ID: 17685379 [TBL] [Abstract][Full Text] [Related]
59. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane. Dathar GK; Tsai YT; Gierszal K; Xu Y; Liang C; Rondinone AJ; Overbury SH; Schwartz V ChemSusChem; 2014 Feb; 7(2):483-91. PubMed ID: 24464945 [TBL] [Abstract][Full Text] [Related]
60. On the presence of Fe(IV) in Fe-ZSM-5 and FeSrO3-x --unequivocal detection of the 3d4 spin system by resonant inelastic X-ray scattering. Pirngruber GD; Grunwaldt JD; van Bokhoven JA; Kalytta A; Reller A; Safonova OV; Glatzel P J Phys Chem B; 2006 Sep; 110(37):18104-7. PubMed ID: 16970419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]