These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22962665)

  • 1. Cathode photoelectrochemical sensing of copper(II) based on analyte-induced formation of exciton trapping.
    Wang P; Ma X; Su M; Hao Q; Lei J; Ju H
    Chem Commun (Camb); 2012 Oct; 48(82):10216-8. PubMed ID: 22962665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive photoelectrochemical immunoassay through tag induced exciton trapping.
    Wen G; Ju H
    Talanta; 2015 Mar; 134():496-500. PubMed ID: 25618699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective detection of trace amount of Cu2+ using semiconductor nanoparticles in photoelectrochemical analysis.
    Wang GL; Xu JJ; Chen HY
    Nanoscale; 2010 Jul; 2(7):1112-4. PubMed ID: 20648335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turn-on electrochemiluminescence sensing of Cd(2+) based on CdTe quantum dots.
    Song H; Yang M; Fan X; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():130-3. PubMed ID: 24934970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-penicillamine capped cadmium telluride quantum dots as a novel fluorometric sensor of copper(II).
    Mohammad-Rezaei R; Razmi H; Abdolmohammad-Zadeh H
    Luminescence; 2013; 28(4):503-9. PubMed ID: 23447377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver Nanolabels-Assisted Ion-Exchange Reaction with CdTe Quantum Dots Mediated Exciton Trapping for Signal-On Photoelectrochemical Immunoassay of Mycotoxins.
    Lin Y; Zhou Q; Tang D; Niessner R; Yang H; Knopp D
    Anal Chem; 2016 Aug; 88(15):7858-66. PubMed ID: 27348353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced electrochemiluminescence from reduced graphene oxide-CdTe quantum dots for highly selective determination of copper ion.
    Hu FX; Wang J; Chen S; Rao Q
    Luminescence; 2019 Nov; 34(7):666-672. PubMed ID: 31243864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched Polyethylenimine-Modified Upconversion Nanohybrid-Mediated Photoelectrochemical Immunoassay with Synergistic Effect of Dual-Purpose Copper Ions.
    Luo Z; Qi Q; Zhang L; Zeng R; Su L; Tang D
    Anal Chem; 2019 Mar; 91(6):4149-4156. PubMed ID: 30793581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photoelectrochemical strategy for ultrasensitive DNA detection based on two different sizes of CdTe quantum dots cosensitized TiO2/CdS:Mn hybrid structure.
    Fan GC; Han L; Zhang JR; Zhu JJ
    Anal Chem; 2014 Nov; 86(21):10877-84. PubMed ID: 25294102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film.
    Ma Q; Ha E; Yang F; Su X
    Anal Chim Acta; 2011 Sep; 701(1):60-5. PubMed ID: 21763809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper ion-induced fluorescence band shift of CdTe quantum dots: a highly specific strategy for visual detection of Cu(2+) with a portable UV lamp.
    Lu X; Zhao Y; Zhang J; Lu X; Wang Y; Liu C
    Analyst; 2015 Dec; 140(23):7859-63. PubMed ID: 26504911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.
    Zhao Y; Tan L; Gao X; Jie G; Huang T
    Biosens Bioelectron; 2018 Jul; 110():239-245. PubMed ID: 29627645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of L-cysteine capped CdTe quantum dots and application to test Cu(II) deficiency in biological samples from critically ill patients.
    Sáez L; Molina J; Florea DI; Planells EM; Cabeza MC; Quintero B
    Anal Chim Acta; 2013 Jun; 785():111-8. PubMed ID: 23764451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application.
    Zhao WW; Yu PP; Shan Y; Wang J; Xu JJ; Chen HY
    Anal Chem; 2012 Jul; 84(14):5892-7. PubMed ID: 22765356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot-based assay for Cu(2+) quantification in bacterial cell culture.
    Durán-Toro V; Gran-Scheuch A; Órdenes-Aenishanslins N; Monrás JP; Saona LA; Venegas FA; Chasteen TG; Bravo D; Pérez-Donoso JM
    Anal Biochem; 2014 Apr; 450():30-6. PubMed ID: 24433980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-quantum-dots-based ratiometric fluorescent probe for visual detection of copper ion.
    Sun X; Liu P; Wu L; Liu B
    Analyst; 2015 Oct; 140(19):6742-7. PubMed ID: 26332573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive photoelectrochemical aptasensor for lead ion detection based on sensitization effect of CdTe QDs on MoS
    Shi JJ; Zhu JC; Zhao M; Wang Y; Yang P; He J
    Talanta; 2018 Jun; 183():237-244. PubMed ID: 29567170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu Nanoclusters-Encapsulated Liposomes: Toward Sensitive Liposomal Photoelectrochemical Immunoassay.
    Mei LP; Jiang XY; Yu XD; Zhao WW; Xu JJ; Chen HY
    Anal Chem; 2018 Feb; 90(4):2749-2755. PubMed ID: 29359937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Photoelectrochemical Proximity Assay for Highly Selective Protein Detection in Biological Matrixes.
    Wen G; Ju H
    Anal Chem; 2016 Aug; 88(16):8339-45. PubMed ID: 27464227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II).
    Xia Y; Zhu C
    Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.