These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 22962667)

  • 1. Advances in functional X-ray imaging techniques and contrast agents.
    Chen H; Rogalski MM; Anker JN
    Phys Chem Chem Phys; 2012 Oct; 14(39):13469-86. PubMed ID: 22962667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification effect on contrast agent efficiency for X-ray based spectral photon-counting scanner/luminescence imaging: from fundamental study to
    Cuau L; Akl P; Gautheron A; Houmeau A; Chaput F; Yaromina A; Dubois L; Lambin P; Karpati S; Parola S; Rezaeifar B; Langlois JB; Si-Mohamed SA; Montcel B; Douek P; Lerouge F
    Nanoscale; 2024 Feb; 16(6):2931-2944. PubMed ID: 38230699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of in vivo optical molecular imaging and sensing from x-ray excitation.
    Pogue BW; Zhang R; Cao X; Jia JM; Petusseau A; Bruza P; Vinogradov SA
    J Biomed Opt; 2021 Jan; 26(1):. PubMed ID: 33386709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The Development of Luminescent Nano-probes on Hard X-ray Irradiation].
    Osakada Y
    Yakugaku Zasshi; 2016; 136(1):17-20. PubMed ID: 26725662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes.
    Naczynski DJ; Sun C; Türkcan S; Jenkins C; Koh AL; Ikeda D; Pratx G; Xing L
    Nano Lett; 2015 Jan; 15(1):96-102. PubMed ID: 25485705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focused x-ray luminescence imaging system for small animals based on a rotary gantry.
    Lun MC; Cong W; Arifuzzaman M; Ranasinghe M; Bhattacharya S; Anker JN; Wang G; Li C
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33738992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and structural investigations of Yb
    Meenambal R; Kannan S
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():817-823. PubMed ID: 30033317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics.
    Hong Z; Chen Z; Chen Q; Yang H
    Acc Chem Res; 2023 Jan; 56(1):37-51. PubMed ID: 36533853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications.
    Liu Y; Ai K; Lu L
    Acc Chem Res; 2012 Oct; 45(10):1817-27. PubMed ID: 22950890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast agents for x-ray luminescence computed tomography.
    Lun MC; Ranasinghe M; Arifuzzaman M; Fang Y; Guo Y; Anker JN; Li C
    Appl Opt; 2021 Aug; 60(23):6769-6775. PubMed ID: 34613157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining X-ray excited optical luminescence and X-ray absorption spectroscopy for correlative imaging on the nanoscale.
    Hageraats S; Keune K; Stanescu S; Laurent JM; Fresquet W; Thoury M
    J Synchrotron Radiat; 2021 Nov; 28(Pt 6):1858-1864. PubMed ID: 34738940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential for imaging engineered tissues with X-ray phase contrast.
    Appel A; Anastasio MA; Brey EM
    Tissue Eng Part B Rev; 2011 Oct; 17(5):321-30. PubMed ID: 21682604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review: X-ray excited luminescence of gadolinium based optoelectronic phosphors.
    Mahakhode JG; Nande A; Dhoble SJ
    Luminescence; 2021 Sep; 36(6):1344-1353. PubMed ID: 33971080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics.
    Ahmad F; Wang X; Jiang Z; Yu X; Liu X; Mao R; Chen X; Li W
    ACS Nano; 2019 Sep; 13(9):10419-10433. PubMed ID: 31430127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From 2D STXM to 3D Imaging: Soft X-ray Laminography of Thin Specimens.
    Witte K; Späth A; Finizio S; Donnelly C; Watts B; Sarafimov B; Odstrcil M; Guizar-Sicairos M; Holler M; Fink RH; Raabe J
    Nano Lett; 2020 Feb; 20(2):1305-1314. PubMed ID: 31951418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasmall biomolecule-anchored hybrid GdVO4 nanophosphors as a metabolizable multimodal bioimaging contrast agent.
    Dong K; Ju E; Liu J; Han X; Ren J; Qu X
    Nanoscale; 2014 Oct; 6(20):12042-9. PubMed ID: 25185795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking the Depth Dependence by Nanotechnology-Enhanced X-Ray-Excited Deep Cancer Theranostics.
    Fan W; Tang W; Lau J; Shen Z; Xie J; Shi J; Chen X
    Adv Mater; 2019 Mar; 31(12):e1806381. PubMed ID: 30698854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed X-ray-induced luminescence computed tomography.
    Dai X; Cheng K; Zhao W; Xing L
    J Biophotonics; 2020 Sep; 13(9):e202000066. PubMed ID: 32445254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical imaging in tissue with X-ray excited luminescent sensors.
    Chen H; Longfield DE; Varahagiri VS; Nguyen KT; Patrick AL; Qian H; VanDerveer DG; Anker JN
    Analyst; 2011 Sep; 136(17):3438-45. PubMed ID: 21695291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasively Imaging pH at the Surface of Implanted Orthopedic Devices with X-ray Excited Luminescence Chemical Imaging.
    Uzair U; Benza D; Behrend CJ; Anker JN
    ACS Sens; 2019 Sep; 4(9):2367-2374. PubMed ID: 31487166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.