These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22962741)

  • 1. Shape effect on electronic and photovoltaic properties of CdS nanocrystals.
    Mazumdar S; Bhattacharyya AJ
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6308-14. PubMed ID: 22962741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Photovoltaic Response by Tuning Light-Harvesting Nanocrystal Shape Synthesized Using a Quick Liquid-Gas Phase Reaction.
    Mazumdar S; Tamilselvan M; Bhattacharyya AJ
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28188-96. PubMed ID: 26484562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and morphological control of europium doped cadmium sulphide nanocrystals.
    Saravanan L; Jayavel R; Aldeyab SS; Zaidi JS; Ariga K; Vinu A
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7783-8. PubMed ID: 22097487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and optical properties of wurtzite-type CdS nanocrystals.
    Cao H; Wang G; Zhang S; Zhang X; Rabinovich D
    Inorg Chem; 2006 Jun; 45(13):5103-8. PubMed ID: 16780332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber.
    Chen C; Zhai Y; Li C; Li F
    Nanoscale Res Lett; 2014; 9(1):605. PubMed ID: 25411566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
    Crisp RW; Panthani MG; Rance WL; Duenow JN; Parilla PA; Callahan R; Dabney MS; Berry JJ; Talapin DV; Luther JM
    ACS Nano; 2014 Sep; 8(9):9063-72. PubMed ID: 25133302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application.
    Huang WC; Tseng CH; Chang SH; Tuan HY; Chiang CC; Lyu LM; Huang MH
    Langmuir; 2012 Jun; 28(22):8496-501. PubMed ID: 22607372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry breaking in semiconductor nanocrystals via kinetic-controlled surface diffusion: a strategy for manipulating the junction structure.
    Wang X; Liu M; Chen Y; Fu W; Wang B; Guo L
    Nanoscale; 2016 Sep; 8(35):15970-7. PubMed ID: 27539367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties.
    Nan W; Niu Y; Qin H; Cui F; Yang Y; Lai R; Lin W; Peng X
    J Am Chem Soc; 2012 Dec; 134(48):19685-93. PubMed ID: 23131103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals.
    Mahler B; Lequeux N; Dubertret B
    J Am Chem Soc; 2010 Jan; 132(3):953-9. PubMed ID: 20043669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior incident photon-to-current conversion efficiency of Mo-doped activated carbon supported CdS-sensitized solar cells.
    Batur E; Kutluay S; Baytar O; Şahin Ö; Horoz S
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):19766-19775. PubMed ID: 36239891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape control of CdSe nanocrystals with zinc blende structure.
    Liu L; Zhuang Z; Xie T; Wang YG; Li J; Peng Q; Li Y
    J Am Chem Soc; 2009 Nov; 131(45):16423-9. PubMed ID: 19902978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of crystalline phase and morphology on the visible light photocatalytic H₂-production activity of CdS nanocrystals.
    Lang D; Xiang Q; Qiu G; Feng X; Liu F
    Dalton Trans; 2014 May; 43(19):7245-53. PubMed ID: 24683600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting charge relaxation pathways in CdSe/CdS nanocrystals using femtosecond two-dimensional electronic spectroscopy.
    Jarrett JW; Yi C; Stoll T; Rehault J; Oriana A; Branchi F; Cerullo G; Knappenberger KL
    Nanoscale; 2017 Mar; 9(13):4572-4577. PubMed ID: 28321446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.