These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22962798)

  • 1. Nanotechnology in automotive industry: research strategy and trends for the future-small objects, big impacts.
    Coelho MC; Torrão G; Emami N; Grácio J
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6621-30. PubMed ID: 22962798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns.
    Shafique M; Luo X
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31390752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global sustainability and key needs in future automotive design.
    McAuley JW
    Environ Sci Technol; 2003 Dec; 37(23):5414-6. PubMed ID: 14700327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Trends in Metallic Materials for Body Panels and Structural Members Used in the Automotive Industry.
    Trzepieciński T; Najm SM
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle economic and environmental implications of using nanocomposites in automobiles.
    Lloyd SM; Lave LB
    Environ Sci Technol; 2003 Aug; 37(15):3458-66. PubMed ID: 12966996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable improvement and evaluation of the shifting smoothness of vehicle transmission.
    Li Y; Hu C; Chen Z; Wang C; Li J; Guo H
    Sci Rep; 2021 Nov; 11(1):22610. PubMed ID: 34799636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impacts of nanomaterials.
    Kabir E; Kumar V; Kim KH; Yip ACK; Sohn JR
    J Environ Manage; 2018 Nov; 225():261-271. PubMed ID: 30096714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental benefits and concerns on safety: communicating latest results on nanotechnology safety research-the project DaNa
    Kühnel D; Marquardt C; Nau K; Krug HF; Paul F; Steinbach C
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11120-11125. PubMed ID: 26903124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of digital transformation on the automotive industry.
    Llopis-Albert C; Rubio F; Valero F
    Technol Forecast Soc Change; 2021 Jan; 162():120343. PubMed ID: 33052150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology in Textiles.
    Yetisen AK; Qu H; Manbachi A; Butt H; Dokmeci MR; Hinestroza JP; Skorobogatiy M; Khademhosseini A; Yun SH
    ACS Nano; 2016 Mar; 10(3):3042-68. PubMed ID: 26918485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating knowledge benefits of automotive lightweighting materials R&D projects.
    Peretz JH; Das S; Tonn BE
    Eval Program Plann; 2009 Aug; 32(3):300-9. PubMed ID: 19414194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of the system for nanomaterials and nanotechnology safety in Russian Federation].
    Onishchenko GG; Tutelyan VA; Gmoshinsky IV; Khotimchenko SA
    Gig Sanit; 2013; (1):4-11. PubMed ID: 23805683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials for environmental remediation: investigating the role of nanoinformatics in support of environmental, health, and safety oversight of nanotechnologies at the local level.
    Massawe E
    J Environ Health; 2013; 76(1):8-17. PubMed ID: 23947284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications.
    Rebitzer G; Ekvall T; Frischknecht R; Hunkeler D; Norris G; Rydberg T; Schmidt WP; Suh S; Weidema BP; Pennington DW
    Environ Int; 2004 Jul; 30(5):701-20. PubMed ID: 15051246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnology impact on the automotive industry.
    Wong KV; Paddon PA
    Recent Pat Nanotechnol; 2014; 8(3):181-99. PubMed ID: 25360613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts.
    Lloyd SM; Lave LB; Matthews HS
    Environ Sci Technol; 2005 Mar; 39(5):1384-92. PubMed ID: 15787381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of nanomaterials for sustainable energy production.
    Liu CJ; Burghaus U; Besenbacher F; Wang ZL
    ACS Nano; 2010 Oct; 4(10):5517-26. PubMed ID: 20973572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.
    Meng F; McKechnie J; Turner T; Wong KH; Pickering SJ
    Environ Sci Technol; 2017 Nov; 51(21):12727-12736. PubMed ID: 29017318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.