These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22962804)

  • 1. Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications.
    Svorcík V; Makajová Z; Kasálková-Slepicková N; Kolská Z; Bacáková L
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6665-71. PubMed ID: 22962804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles.
    Parizek M; Kasalkova N; Bacakova L; Slepicka P; Lisa V; Blazkova M; Svorcik V
    Int J Mol Sci; 2009 Nov; 10(10):4352-4374. PubMed ID: 20057950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale.
    Chung TW; Liu DZ; Wang SY; Wang SS
    Biomaterials; 2003 Nov; 24(25):4655-61. PubMed ID: 12951008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface properties of thin gold layers sputtered on polymers.
    Kolská Z; Reznícková A; Kvítek O; Svorcík V
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6652-7. PubMed ID: 22962802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.
    Reznickova A; Novotna Z; Kolska Z; Kasalkova NS; Rimpelova S; Svorcik V
    Mater Sci Eng C Mater Biol Appl; 2015; 52():259-66. PubMed ID: 25953566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylene glycol-grafted polystyrene particles.
    Meng F; Engbers GH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):49-58. PubMed ID: 15174108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion, growth, and maturation of vascular smooth muscle cells on low-density polyethylene grafted with bioactive substances.
    Parizek M; Slepickova Kasalkova N; Bacakova L; Svindrych Z; Slepicka P; Bacakova M; Lisa V; Svorcik V
    Biomed Res Int; 2013; 2013():371430. PubMed ID: 23586032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils.
    Travnickova M; Kasalkova NS; Sedlar A; Molitor M; Musilkova J; Slepicka P; Svorcik V; Bacakova L
    Biomed Mater; 2021 Feb; 16(2):025016. PubMed ID: 33599213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R; Constantinescu I; Rossi NA; Medvedev N; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action.
    Slepicka P; Kasalkova NS; Siegel J; Kolska Z; Bacakova L; Svorcik V
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1120-9. PubMed ID: 25596482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene.
    Žáková P; Slepičková Kasálková N; Kolská Z; Leitner J; Karpíšková J; Stibor I; Slepička P; Švorčík V
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():394-401. PubMed ID: 26706545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.
    Xu B; Feng C; Hu J; Shi P; Gu G; Wang L; Huang X
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6685-92. PubMed ID: 26905980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting.
    Liu SX; Kim JT; Kim S
    J Food Sci; 2008 Apr; 73(3):E143-50. PubMed ID: 18387109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced hydrophobic interaction of polystyrene surfaces by spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ether methacrylate blocks: force measurements in water using atomic force microscope with hydrophobic probes.
    Zhang R; Seki A; Ishizone T; Yokoyama H
    Langmuir; 2008 May; 24(10):5527-33. PubMed ID: 18412376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.
    Abednejad AS; Amoabediny G; Ghaee A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():443-50. PubMed ID: 25063140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.