BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22962864)

  • 1. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding.
    Leo B; Schweimer K; Rösch P; Hartl MJ; Wöhrl BM
    Retrovirology; 2012 Sep; 9():73. PubMed ID: 22962864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the structure and activity of prototype foamy virus RNase H.
    Leo B; Hartl MJ; Schweimer K; Mayr F; Wöhrl BM
    Retrovirology; 2012 Feb; 9():14. PubMed ID: 22325739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural requirements for enzymatic activities of foamy virus protease-reverse transcriptase.
    Schneider A; Peter D; Schmitt J; Leo B; Richter F; Rösch P; Wöhrl BM; Hartl MJ
    Proteins; 2014 Mar; 82(3):375-85. PubMed ID: 23966123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of Substrate Complexes of Foamy Viral Protease-Reverse Transcriptase.
    Nowacka M; Nowak E; Czarnocki-Cieciura M; Jackiewicz J; Skowronek K; Szczepanowski RH; Wöhrl BM; Nowotny M
    J Virol; 2021 Aug; 95(18):e0084821. PubMed ID: 34232702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition.
    Lim D; Orlova M; Goff SP
    J Virol; 2002 Aug; 76(16):8360-73. PubMed ID: 12134040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase.
    Boyer PL; Stenbak CR; Clark PK; Linial ML; Hughes SH
    J Virol; 2004 Jun; 78(12):6112-21. PubMed ID: 15163704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of the RNase H domain of Moloney murine leukemia virus reverse transcriptase.
    Nishimura K; Yokokawa K; Hisayoshi T; Fukatsu K; Kuze I; Konishi A; Mikami B; Kojima K; Yasukawa K
    Protein Expr Purif; 2015 Sep; 113():44-50. PubMed ID: 25959458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of xenotropic murine leukaemia virus-related virus (XMRV) ribonuclease H.
    Kim JH; Kang S; Jung SK; Yu KR; Chung SJ; Chung BH; Erikson RL; Kim BY; Kim SJ
    Biosci Rep; 2012 Oct; 32(5):455-63. PubMed ID: 22724525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of foamy virus reverse transcriptase by human immunodeficiency virus type 1 RNase H inhibitors.
    Corona A; Schneider A; Schweimer K; Rösch P; Wöhrl BM; Tramontano E
    Antimicrob Agents Chemother; 2014 Jul; 58(7):4086-93. PubMed ID: 24798282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the moloney murine leukemia virus RNase H domain.
    Lim D; Gregorio GG; Bingman C; Martinez-Hackert E; Hendrickson WA; Goff SP
    J Virol; 2006 Sep; 80(17):8379-89. PubMed ID: 16912289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and comparative structural analysis of the murine leukaemia virus amphotropic strain 4070A RNase H domain.
    Ey PL; Freeman NL; Bela B; Haese PM; Li P; McInnes JL
    Arch Virol; 1999; 144(11):2185-99. PubMed ID: 10603172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional characterization of an RNase HI domain from the bifunctional protein Rv2228c from Mycobacterium tuberculosis.
    Watkins HA; Baker EN
    J Bacteriol; 2010 Jun; 192(11):2878-86. PubMed ID: 20363939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis.
    Chen Y; Robinson WS; Marion PL
    J Virol; 1994 Aug; 68(8):5232-8. PubMed ID: 8035519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNase H activity: structure, specificity, and function in reverse transcription.
    Schultz SJ; Champoux JJ
    Virus Res; 2008 Jun; 134(1-2):86-103. PubMed ID: 18261820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase.
    Wöhrl BM
    Viruses; 2019 Jul; 11(7):. PubMed ID: 31269675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid.
    Tian L; Kim MS; Li H; Wang J; Yang W
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):507-512. PubMed ID: 29295939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase.
    Stahl SJ; Kaufman JD; Vikić-Topić S; Crouch RJ; Wingfield PT
    Protein Eng; 1994 Sep; 7(9):1103-8. PubMed ID: 7530360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of cysteine 280 of the reverse transcriptase of human immunodeficiency virus type-1: the effects on the ribonuclease H activity.
    Sevilya Z; Loya S; Duvshani A; Adir N; Hizi A
    J Mol Biol; 2003 Mar; 327(1):19-30. PubMed ID: 12614605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of a highly basic helix/loop sequence into the RNase H domain of human immunodeficiency virus reverse transcriptase restores its Mn(2+)-dependent RNase H activity.
    Keck JL; Marqusee S
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2740-4. PubMed ID: 7535929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.