These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22963012)

  • 41. Doping of Sb into Cu
    Zhao B; Deng Y; Cao L; Zhu J; Zhou Z
    Front Chem; 2022; 10():974761. PubMed ID: 36017168
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving Ultraviolet Responses in Cu
    Jeong WL; Jang J; Kim J; Joo SK; Park MD; Kwak HM; Baik J; Kim HJ; Kim JH; Lee DS
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946918
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cation/Anion Substitution in Cu
    Ananthoju B; Mohapatra J; Jangid MK; Bahadur D; Medhekar NV; Aslam M
    Sci Rep; 2016 Oct; 6():35369. PubMed ID: 27748406
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation.
    Xie H; Sánchez Y; López-Marino S; Espíndola-Rodríguez M; Neuschitzer M; Sylla D; Fairbrother A; Izquierdo-Roca V; Pérez-Rodríguez A; Saucedo E
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12744-51. PubMed ID: 25033026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency.
    Ahn S; Choi YJ; Kim K; Eo YJ; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Yoon K
    ChemSusChem; 2013 Jul; 6(7):1282-7. PubMed ID: 23681958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices.
    Zhang R; Cho S; Lim DG; Hu X; Stach EA; Handwerker CA; Agrawal R
    Chem Commun (Camb); 2016 Apr; 52(28):5007-10. PubMed ID: 26981781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source.
    Zhao W; Wang G; Tian Q; Yang Y; Huang L; Pan D
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12650-5. PubMed ID: 25000474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of a Cu2ZnSn(S,Se)4 photovoltaic device by a low-toxicity ethanol solution process.
    Wang G; Zhao W; Cui Y; Tian Q; Gao S; Huang L; Pan D
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10042-7. PubMed ID: 24050660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flexible High-Efficiency CZTSSe Solar Cells on Diverse Flexible Substrates via an Adhesive-Bonding Transfer Method.
    Min JH; Jeong WL; Kim K; Lee JS; Kim KP; Kim J; Gang MG; Hong CW; Kim JH; Lee DS
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8189-8197. PubMed ID: 31994389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks.
    Wang W; Han SY; Sung SJ; Kim DH; Chang CH
    Phys Chem Chem Phys; 2012 Aug; 14(31):11154-9. PubMed ID: 22782084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of the Selenization Temperature on the Mn-Substituted Cu
    Wang Z; Sui Y; Ma M; Wang T
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of Na Dynamics at the Cu2ZnSn(S,Se)4/CdS Interface During Post Low Temperature Treatment of Absorbers.
    Xie H; López-Marino S; Olar T; Sánchez Y; Neuschitzer M; Oliva F; Giraldo S; Izquierdo-Roca V; Lauermann I; Pérez-Rodríguez A; Saucedo E
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):5017-24. PubMed ID: 26836750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cocktails of paste coatings for performance enhancement of CuInGaS(2) thin-film solar cells.
    An HS; Cho Y; Park SJ; Jeon HS; Hwang YJ; Kim DW; Min BK
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):888-93. PubMed ID: 24377257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.
    Cho JW; Ismail A; Park SJ; Kim W; Yoon S; Min BK
    ACS Appl Mater Interfaces; 2013 May; 5(10):4162-5. PubMed ID: 23611655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.
    Sohn SH; Han NS; Park YJ; Park SM; An HS; Kim DW; Min BK; Song JK
    Phys Chem Chem Phys; 2014 Dec; 16(48):27112-8. PubMed ID: 25387997
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors.
    Mainz R; Walker BC; Schmidt SS; Zander O; Weber A; Rodriguez-Alvarez H; Just J; Klaus M; Agrawal R; Unold T
    Phys Chem Chem Phys; 2013 Nov; 15(41):18281-9. PubMed ID: 24068197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Thin In
    Eun Song J; Kyung Hwang S; Hyun Park J; Young Kim J
    ChemSusChem; 2022 Feb; 15(4):e202102350. PubMed ID: 34939335
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review.
    Ghorpade U; Suryawanshi M; Shin SW; Gurav K; Patil P; Pawar S; Hong CW; Kim JH; Kolekar S
    Chem Commun (Camb); 2014 Oct; 50(77):11258-73. PubMed ID: 24978325
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoscale surface potential variation correlates with local S/Se ratio in solution-processed CZTSSe solar cells.
    Salvador M; Vorpahl SM; Xin H; Williamson W; Shao G; Karatay DU; Hillhouse HW; Ginger DS
    Nano Lett; 2014 Dec; 14(12):6926-30. PubMed ID: 25372547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancements in specimen preparation of Cu(In,Ga)(S,Se)2 thin films.
    Abou-Ras D; Marsen B; Rissom T; Frost F; Schulz H; Bauer F; Efimova V; Hoffmann V; Eicke A
    Micron; 2012 Feb; 43(2-3):470-4. PubMed ID: 22192980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.