These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 22963047)

  • 81. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply.
    Uyak V; Toroz I
    J Hazard Mater; 2007 Oct; 149(2):445-51. PubMed ID: 17517472
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Reduction of bromate and chlorate contaminants in water using aqueous phase corona discharge.
    Lakhian V; Dickson-Anderson SE
    Chemosphere; 2020 Sep; 255():126864. PubMed ID: 32402869
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water.
    Zhang J; Yang X
    Analyst; 2013 Jan; 138(2):434-7. PubMed ID: 23175696
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Reduced effect of bromide on the genotoxicity in secondary effluent of a municipal wastewater treatment plant during chlorination.
    Wu QY; Li Y; Hu HY; Sun YX; Zhao FY
    Environ Sci Technol; 2010 Jul; 44(13):4924-9. PubMed ID: 20521844
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Bromide occurrence in Croatian groundwater and application of literature models for bromate formation.
    Gregov M; Jukić A; Ćurko J; Matošić M; Gajšak F; Crnek V; Ujević Bošnjak M
    Environ Monit Assess; 2022 Jun; 194(8):544. PubMed ID: 35771393
    [TBL] [Abstract][Full Text] [Related]  

  • 86. One-electron reduction of N-chlorinated and N-brominated species is a source of radicals and bromine atom formation.
    Pattison DI; O'Reilly RJ; Skaff O; Radom L; Anderson RF; Davies MJ
    Chem Res Toxicol; 2011 Mar; 24(3):371-82. PubMed ID: 21344936
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine.
    von Gunten U
    Water Res; 2003 Apr; 37(7):1469-87. PubMed ID: 12600375
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Bromate analysis in groundwater and wastewater samples.
    Butler R; Lytton L; Godley AR; Tothill IE; Cartmell E
    J Environ Monit; 2005 Oct; 7(10):999-1006. PubMed ID: 16193172
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Advances in organic fluorescent probes for bromide ions, hypobromous acid and related eosinophil peroxidase-A review.
    Zhang D; Yang X; Wang T; Ji X; Wu X
    Anal Chim Acta; 2023 Mar; 1244():340626. PubMed ID: 36737144
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion.
    Parrino F; Camera-Roda G; Loddo V; Palmisano G; Augugliaro V
    Water Res; 2014 Mar; 50():189-99. PubMed ID: 24374130
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Technical note: interference of Br-, BrO3-, and ClO3- with DOX determination.
    Symons JM; Xia R
    J Am Water Works Assoc; 1995 Aug; 87(8):81-4. PubMed ID: 11540484
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Assessing the occurrence of the dibromide radical (Br₂⁻•) in natural waters: measures of triplet-sensitised formation, reactivity, and modelling.
    De Laurentiis E; Minella M; Maurino V; Minero C; Mailhot G; Sarakha M; Brigante M; Vione D
    Sci Total Environ; 2012 Nov; 439():299-306. PubMed ID: 23085471
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Microbial bromate reduction following ozonation of bromide-rich wastewater in coastal areas.
    Falås P; Juárez R; Dell LA; Fransson S; Karlsson S; Cimbritz M
    Sci Total Environ; 2022 Oct; 841():156694. PubMed ID: 35714740
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalytic system.
    Selcuk H; Sarikaya HZ; Bekbolet M; Anderson MA
    Chemosphere; 2006 Feb; 62(5):715-21. PubMed ID: 16005936
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid.
    Lloyd MM; van Reyk DM; Davies MJ; Hawkins CL
    Biochem J; 2008 Sep; 414(2):271-80. PubMed ID: 18459943
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effects of organic matter, ammonia, bromide, and hydrogen peroxide on bromate formation during water ozonation.
    Wang Y; Man T; Zhang R; Yan X; Wang S; Zhang M; Wang P; Ren L; Yu J; Li C
    Chemosphere; 2021 Dec; 285():131352. PubMed ID: 34246937
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A novel benzothiazolin-based fluorescent probe for hypobromous acid and its application in environment and biosystems.
    Zhang X; Liu C; Zhu H; Wang K; Liu M; Li X; Ma L; Yu M; Sheng W; Zhu B
    Talanta; 2024 Jan; 266(Pt 1):124969. PubMed ID: 37524040
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis.
    Hawkins CL; Brown BE; Davies MJ
    Arch Biochem Biophys; 2001 Nov; 395(2):137-45. PubMed ID: 11697850
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fe(II)-Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate.
    Zhong Y; Yang Q; Luo K; Wu X; Li X; Liu Y; Tang W; Zeng G; Peng B
    J Hazard Mater; 2013 Apr; 250-251():345-53. PubMed ID: 23474408
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Evaluation of preformed monochloramine for bromate control in ozonation for potable reuse.
    Pearce R; Hogard S; Buehlmann P; Salazar-Benites G; Wilson C; Bott C
    Water Res; 2022 Mar; 211():118049. PubMed ID: 35032872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.