These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2296311)

  • 61. A model for the mobility of single-stranded DNA in capillary gel electrophoresis.
    Luckey JA; Smith LM
    Electrophoresis; 1993; 14(5-6):492-501. PubMed ID: 8354234
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transverse pore gradient gel electrophoresis, using the PhastSystem.
    Buzás Z; Wheeler DL; Garner MM; Tietz D; Chrambach A
    Electrophoresis; 1994; 15(8-9):1028-31. PubMed ID: 7859703
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of synthetic branched DNA (BDNA) using polyacrylamide gel-filled capillary electrophoresis.
    Chang CA; Ahle D; Urdea MS; Heiger DN; Karger BL
    Nucleic Acids Symp Ser; 1991; (24):223. PubMed ID: 1841294
    [No Abstract]   [Full Text] [Related]  

  • 64. Field-inversion gel electrophoresis.
    Carle GF; Carle GF
    Methods Mol Biol; 1992; 12():3-18. PubMed ID: 21409622
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modeling ssDNA electrophoretic migration with band broadening in an entangled or cross-linked network.
    Chen Z; Graham R; Burns MA; Larson RG
    Electrophoresis; 2007 Aug; 28(16):2783-800. PubMed ID: 17702058
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mobility and activation energy of single-stranded DNA in denaturing cross-linked polyacrylamide slab gels.
    Djouadi Z; Bottani S; Duval MA; Siebert R; Tricoire H; Valentin L
    J Chromatogr A; 2000 Oct; 894(1-2):231-9. PubMed ID: 11100865
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mapping genomic organization by field inversion and two-dimensional gel electrophoresis: application to the murine T-cell receptor gamma gene family.
    Woolf T; Lai E; Kronenberg M; Hood L
    Nucleic Acids Res; 1988 May; 16(9):3863-75. PubMed ID: 3375073
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fractionation of low molecular weight DNA or RNA in polyacrylamide gels containing 98% formamide or 7 M urea.
    Maniatis T; Efstratiadis A
    Methods Enzymol; 1980; 65(1):299-305. PubMed ID: 6154865
    [No Abstract]   [Full Text] [Related]  

  • 69. Tension of DNA molecules and angular dependence of PFGE efficiency: a theoretical analysis.
    Pastushenko VPh
    Appl Theor Electrophor; 1991; 1(6):317-21. PubMed ID: 1932201
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigating DNA migration in pulsed fields using a miniaturized FIGE system.
    Chen X; Ugaz VM
    Electrophoresis; 2008 Dec; 29(23):4761-7. PubMed ID: 19053074
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Horizontal polyacrylamide gel electrophoresis for the separation of DNA fragments.
    Haas H; Budowle B; Weiler G
    Electrophoresis; 1994 Feb; 15(2):153-8. PubMed ID: 8026427
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A model for the separation of large DNA molecules by crossed field gel electrophoresis.
    Southern EM; Anand R; Brown WR; Fletcher DS
    Nucleic Acids Res; 1987 Aug; 15(15):5925-43. PubMed ID: 3627974
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field.
    Carle GF; Frank M; Olson MV
    Science; 1986 Apr; 232(4746):65-8. PubMed ID: 3952500
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pulsed field sequencing gel electrophoresis.
    Brassard E; Turmel C; Noolandi J
    Electrophoresis; 1992 Aug; 13(8):529-35. PubMed ID: 1451688
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dispersion coefficients of a protein and DNA fragment in polyacrylamide gel electrophoresis as a function of parameters defining the effective gel pore size and particle size.
    Chang HT; Chrambach A
    Electrophoresis; 1995 Jun; 16(6):895-8. PubMed ID: 7498132
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Separation of large DNA molecules by contour-clamped homogeneous electric fields.
    Chu G; Vollrath D; Davis RW
    Science; 1986 Dec; 234(4783):1582-5. PubMed ID: 3538420
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selective extraction of size-fractioned DNA samples in microfabricated electrophoresis devices.
    Lin R; Burke DT; Burns MA
    J Chromatogr A; 2003 Aug; 1010(2):255-68. PubMed ID: 12974295
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gel electrophoresis of linear and star-branched DNA.
    Lau HW; Archer LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061916. PubMed ID: 22304125
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Trapping gel electrophoresis of end-labeled DNA: an analytical model for mobility and diffusion.
    Slater GW; Desruisseaux C; Villeneuve C; Guo HL; Drouin G
    Electrophoresis; 1995 May; 16(5):704-12. PubMed ID: 7588548
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Isolation and analysis of low molecular weight DNA fraction by electrophoretic and chromatographic techniques.
    Rossi R; Viola-Magni MP
    Proc Soc Exp Biol Med; 1978 May; 158(1):117-22. PubMed ID: 662867
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.