BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 22963133)

  • 41. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato.
    Veronico P; Paciolla C; Pomar F; De Leonardis S; GarcĂ­a-Ulloa A; Melillo MT
    J Plant Physiol; 2018 Nov; 230():40-50. PubMed ID: 30145275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus.
    Son SH; Khan Z; Kim SG; Kim YH
    J Appl Microbiol; 2009 Aug; 107(2):524-32. PubMed ID: 19457027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes.
    Wei L; Shao Y; Wan J; Feng H; Zhu H; Huang H; Zhou Y
    PLoS One; 2014; 9(1):e85988. PubMed ID: 24465828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NEMATODE-TRAPPING FUNGI: EVALUATION OF AXENIC HEALTHY AND GALLED ROOTS AS TRAP INDUCERS.
    IFFLAND DW; ALLISON P
    Science; 1964 Oct; 146(3643):547-8. PubMed ID: 14190248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants.
    Goswami BK; Pandey RK; Rathour KS; Bhattacharya C; Singh L
    J Zhejiang Univ Sci B; 2006 Nov; 7(11):873-5. PubMed ID: 17048300
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench.
    Agarwal M; Dheeman S; Dubey RC; Kumar P; Maheshwari DK; Bajpai VK
    Microbiol Res; 2017 Dec; 205():40-47. PubMed ID: 28942843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Emamectin Benzoate on Root-Knot Nematodes and Tomato Yield.
    Cheng X; Liu X; Wang H; Ji X; Wang K; Wei M; Qiao K
    PLoS One; 2015; 10(10):e0141235. PubMed ID: 26509680
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Involvement of salicylic acid in induction of nematode resistance in plants].
    Zinov'eva SV; Vasiukova NI; Udalova ZhV; Gerasimova NG; Ozeretskovskaia OL
    Izv Akad Nauk Ser Biol; 2011; (5):532-8. PubMed ID: 22117420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of plant species on the biological control activity of the antagonistic rhizobacterium Rhizobium etli strain G12 toward the root-knot nematode, Meloidogyne incognita.
    Mahdy M; Hallmann J; Sikora RA
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2b):655-62. PubMed ID: 12425090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elucidating the role of the phenylacetic acid metabolic complex in the pathogenic activity of Rhizoctonia solani anastomosis group 3.
    Bartz FE; Glassbrook NJ; Danehower DA; Cubeta MA
    Mycologia; 2012; 104(4):793-803. PubMed ID: 22466798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anastomosis Groups of Rhizoctonia solani associated with tomato foot rot in Pothohar Region of Pakistan.
    Gondal AS; Rauf A; Naz F
    Sci Rep; 2019 Mar; 9(1):3910. PubMed ID: 30846707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani.
    Yandigeri MS; Malviya N; Solanki MK; Shrivastava P; Sivakumar G
    World J Microbiol Biotechnol; 2015 Aug; 31(8):1217-25. PubMed ID: 25982747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nematicidal Activity of Grammicin Biosynthesis Pathway Intermediates in
    Kim YJ; Duraisamy K; Jeong MH; Park SY; Kim S; Lee Y; Nguyen VT; Yu NH; Park AR; Kim JC
    Molecules; 2021 Aug; 26(15):. PubMed ID: 34361827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of new chemical and biological nematicides for managing Meloidogyne javanica in tomato production and associated double-crops in Florida.
    Desaeger JA; Watson TT
    Pest Manag Sci; 2019 Dec; 75(12):3363-3370. PubMed ID: 31074102
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biocontrol efficacy of Pseudoxanthomonas japonensis against Meloidogyne incognita and its nematostatic metabolites.
    Hu Y; Li J; Li J; Zhang F; Wang J; Mo M; Liu Y
    FEMS Microbiol Lett; 2019 Jan; 366(2):. PubMed ID: 30596986
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological impact of divergent land management practices on tomato crop health.
    Chellemi DO; Wu T; Graham JH; Church G
    Phytopathology; 2012 Jun; 102(6):597-608. PubMed ID: 22352308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of the Endophytic Bacteria
    Li X; Hu HJ; Li JY; Wang C; Chen SL; Yan SZ
    Plant Dis; 2019 Jul; 103(7):1551-1558. PubMed ID: 31059388
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita.
    Kaur T; Jasrotia S; Ohri P; Manhas RK
    Microbiol Res; 2016 Nov; 192():247-252. PubMed ID: 27664743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential of vermicompost extract in enhancing the biomass and bioactive components along with mitigation of Meloidogyne incognita-induced stress in tomato.
    Tikoria R; Kaur A; Ohri P
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):56023-56036. PubMed ID: 35332451
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the effect of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum.
    Ladner DC; Tchounwou PB; Lawrence GW
    Int J Environ Res Public Health; 2008 Jun; 5(2):104-10. PubMed ID: 18678924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.