BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22963384)

  • 1. Solubility of iron from combustion source particles in acidic media linked to iron speciation.
    Fu H; Lin J; Shang G; Dong W; Grassian VH; Carmichael GR; Li Y; Chen J
    Environ Sci Technol; 2012 Oct; 46(20):11119-27. PubMed ID: 22963384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coal fly ash as a source of iron in atmospheric dust.
    Chen H; Laskin A; Baltrusaitis J; Gorski CA; Scherer MM; Grassian VH
    Environ Sci Technol; 2012 Feb; 46(4):2112-20. PubMed ID: 22260270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.
    Fu HB; Shang GF; Lin J; Hu YJ; Hu QQ; Guo L; Zhang YC; Chen JM
    Sci Total Environ; 2014 May; 481():377-91. PubMed ID: 24607631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron solubility related to particle sulfur content in source emission and ambient fine particles.
    Oakes M; Ingall ED; Lai B; Shafer MM; Hays MD; Liu ZG; Russell AG; Weber RJ
    Environ Sci Technol; 2012 Jun; 46(12):6637-44. PubMed ID: 22621615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass fractions, solubility, speciation and isotopic compositions of iron in coal and municipal waste fly ash.
    Li R; Zhang H; Wang F; He Y; Huang C; Luo L; Dong S; Jia X; Tang M
    Sci Total Environ; 2022 Sep; 838(Pt 1):155974. PubMed ID: 35588802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry.
    Prahalad AK; Soukup JM; Inmon J; Willis R; Ghio AJ; Becker S; Gallagher JE
    Toxicol Appl Pharmacol; 1999 Jul; 158(2):81-91. PubMed ID: 10406923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle characteristics responsible for effects on human lung epithelial cells.
    Aust AE; Ball JC; Hu AA; Lighty JS; Smith KR; Straccia AM; Veranth JM; Young WC
    Res Rep Health Eff Inst; 2002 Dec; (110):1-65; discussion 67-76. PubMed ID: 12578113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mössbauer spectroscopy indicates that iron in an aluminosilicate glass phase is the source of the bioavailable iron from coal fly ash.
    Veranth JM; Smith KR; Huggins F; Hu AA; Lighty JS; Aust AE
    Chem Res Toxicol; 2000 Mar; 13(3):161-4. PubMed ID: 10725111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light.
    Gankanda A; Coddens EM; Zhang Y; Cwiertny DM; Grassian VH
    Environ Sci Process Impacts; 2016 Dec; 18(12):1484-1491. PubMed ID: 27796391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere.
    Hu Y; Lin J; Zhang S; Kong L; Fu H; Chen J
    Sci Total Environ; 2015 Apr; 511():369-80. PubMed ID: 25555257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical speciation of Fe and Ni in residual oil fly ash fine particulate matter using X-ray absorption spectroscopy.
    Pattanaik S; Huggins FE; Huffman GP
    Environ Sci Technol; 2012 Dec; 46(23):12927-35. PubMed ID: 23126560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source and mixing state of iron-containing particles in Shanghai by individual particle analysis.
    Zhang G; Bi X; Lou S; Li L; Wang H; Wang X; Zhou Z; Sheng G; Fu J; Chen C
    Chemosphere; 2014 Jan; 95():9-16. PubMed ID: 23719486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and acid-mobilization study for typical iron-bearing clay mineral.
    Wang Z; Li R; Cui L; Fu H; Lin J; Chen J
    J Environ Sci (China); 2018 Sep; 71():222-232. PubMed ID: 30195681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical imaging analysis of environmental particles using the focused ion beam/scanning electron microscopy technique: microanalysis insights into atmospheric chemistry of fly ash.
    Chen H; Grassian VH; Saraf LV; Laskin A
    Analyst; 2013 Jan; 138(2):451-60. PubMed ID: 23207643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine Iron Aerosols Are Internally Mixed with Nitrate in the Urban European Atmosphere.
    Dall'Osto M; Beddows DC; Harrison RM; Onat B
    Environ Sci Technol; 2016 Apr; 50(8):4212-20. PubMed ID: 27002272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel.
    Fernandez A; Wendt JO; Wolski N; Hein KR; Wang S; Witten ML
    Chemosphere; 2003 Jun; 51(10):1129-37. PubMed ID: 12718979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.
    Chen H; Grassian VH
    Environ Sci Technol; 2013 Sep; 47(18):10312-21. PubMed ID: 23883276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal.
    Smith KR; Veranth JM; Lighty JS; Aust AE
    Chem Res Toxicol; 1998 Dec; 11(12):1494-500. PubMed ID: 9860493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.