These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 22963458)
61. Interfacial reactions of glasses for biomedical application by scanning transmission electron microscopy and microanalysis. Banchet V; Michel J; Jallot E; Wortham L; Bouthors S; Laurent-Maquin D; Balossier G Acta Biomater; 2006 May; 2(3):349-59. PubMed ID: 16701894 [TBL] [Abstract][Full Text] [Related]
62. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics. Gulenko A; Masson O; Berghout A; Hamani D; Thomas P Phys Chem Chem Phys; 2014 Jul; 16(27):14150-60. PubMed ID: 24905883 [TBL] [Abstract][Full Text] [Related]
63. Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. Christie JK; Pedone A; Menziani MC; Tilocca A J Phys Chem B; 2011 Mar; 115(9):2038-45. PubMed ID: 21322627 [TBL] [Abstract][Full Text] [Related]
64. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR. Martin RA; Twyman HL; Rees GJ; Smith JM; Barney ER; Smith ME; Hanna JV; Newport RJ Phys Chem Chem Phys; 2012 Sep; 14(35):12105-13. PubMed ID: 22868255 [TBL] [Abstract][Full Text] [Related]
65. Structural models for yttrium aluminium borate laser glasses: NMR and EPR studies of the system (Y2O3)(0.2)-(Al2O3)x-(B2O3)(0.8-x). Deters H; de Lima JF; Magon CJ; de Camargo AS; Eckert H Phys Chem Chem Phys; 2011 Sep; 13(35):16071-83. PubMed ID: 21814672 [TBL] [Abstract][Full Text] [Related]
66. Structural Aspects of Ambient-Temperature Densification of Highly Crack-Resistant Borosilicate and Aluminoborosilicate Glasses: Two Case Studies Examined by Solid-State NMR. Gomes YHF; Logrado M; Inoue T; Nakane S; Kato Y; Yamazaki H; Yamada A; Eckert H J Phys Chem B; 2024 Apr; 128(14):3508-3520. PubMed ID: 38560894 [TBL] [Abstract][Full Text] [Related]
67. Calcium environment in silicate and aluminosilicate glasses probed by ⁴³Ca MQMAS NMR experiments and MD-GIPAW calculations. Gambuzzi E; Pedone A; Menziani MC; Angeli F; Florian P; Charpentier T Solid State Nucl Magn Reson; 2015; 68-69():31-6. PubMed ID: 25912209 [TBL] [Abstract][Full Text] [Related]
68. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models. Paschek D J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560 [TBL] [Abstract][Full Text] [Related]
69. Shear softening and structure in a simulated three-dimensional binary glass. Albano F; Falk ML J Chem Phys; 2005 Apr; 122(15):154508. PubMed ID: 15945646 [TBL] [Abstract][Full Text] [Related]
70. Atomistic modeling of thermodynamic equilibrium and polymorphism of iron. Lee T; Baskes MI; Valone SM; Doll JD J Phys Condens Matter; 2012 Jun; 24(22):225404. PubMed ID: 22585441 [TBL] [Abstract][Full Text] [Related]
71. The nature of intermediate-range order in Ge-As-S glasses: results from reverse Monte Carlo modeling. Soyer-Uzun S; Benmore CJ; Siewenie JE; Sen S J Phys Condens Matter; 2010 Mar; 22(11):115404. PubMed ID: 21389466 [TBL] [Abstract][Full Text] [Related]
72. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609 [TBL] [Abstract][Full Text] [Related]
73. Heat capacity effects associated with the hydrophobic hydration and interaction of simple solutes: a detailed structural and energetical analysis based on molecular dynamics simulations. Paschek D J Chem Phys; 2004 Jun; 120(22):10605-17. PubMed ID: 15268086 [TBL] [Abstract][Full Text] [Related]
74. Metal cation complexation with natural organic matter in aqueous solutions: molecular dynamics simulations and potentials of mean force. Iskrenova-Tchoukova E; Kalinichev AG; Kirkpatrick RJ Langmuir; 2010 Oct; 26(20):15909-19. PubMed ID: 20857966 [TBL] [Abstract][Full Text] [Related]
75. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. Pedone A; Malavasi G; Menziani MC; Cormack AN; Segre U J Phys Chem B; 2006 Jun; 110(24):11780-95. PubMed ID: 16800478 [TBL] [Abstract][Full Text] [Related]
76. Ionic transport behavior of BaO containing sodium borosilicate glasses. Mishra RK; Mishra R; Kaushik CP; Tyagi AK; Tomar BS; Das D; Raj K J Hazard Mater; 2009 Jan; 161(2-3):1450-3. PubMed ID: 18562091 [TBL] [Abstract][Full Text] [Related]
77. A reconstructive polyamorphous transition in borosilicate glass induced by irreversible compaction. Fuhrmann S; Deschamps T; Champagnon B; Wondraczek L J Chem Phys; 2014 Feb; 140(5):054501. PubMed ID: 24511946 [TBL] [Abstract][Full Text] [Related]
78. Quantification of the disorder in network-modified silicate glasses. Farnan I; Grandinetti PJ; Baltisberger JH; Stebbins JF; Werner U; Eastman MA; Pines A Nature; 1992 Jul; 358(6381):31-5. PubMed ID: 1614527 [TBL] [Abstract][Full Text] [Related]
79. Development of Water Reactive Potentials for Sodium Silicate Glasses. Mahadevan TS; Sun W; Du J J Phys Chem B; 2019 May; 123(20):4452-4461. PubMed ID: 31033296 [TBL] [Abstract][Full Text] [Related]
80. SEM and AFM Studies of Two-Phase Magnetic Alkali Borosilicate Glasses. Andreeva N; Tomkovich M; Naberezhnov A; Nacke B; Filimonov A; Alekseeva O; Vanina P; Nizhankovskii V ScientificWorldJournal; 2017; 2017():9078152. PubMed ID: 28428976 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]