These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22963744)

  • 21. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.
    Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F
    J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting.
    Cheng XY; Li SJ; Murr LE; Zhang ZB; Hao YL; Yang R; Medina F; Wicker RB
    J Mech Behav Biomed Mater; 2012 Dec; 16():153-62. PubMed ID: 23182384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique.
    Nugroho AW; Leadbeater G; Davies IJ
    J Mater Sci Mater Med; 2010 Dec; 21(12):3103-7. PubMed ID: 20960037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Jul; 95():232-239. PubMed ID: 31035037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
    Khor KA; Gu YW; Pan D; Cheang P
    Biomaterials; 2004 Aug; 25(18):4009-17. PubMed ID: 15046891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatibility and compressive properties of Ti-6Al-4V scaffolds having Mg element.
    Kalantari SM; Arabi H; Mirdamadi S; Mirsalehi SA
    J Mech Behav Biomed Mater; 2015 Aug; 48():183-191. PubMed ID: 25955560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An application of powder metallurgy to dentistry.
    Oda Y; Ueno S; Kudoh Y
    Bull Tokyo Dent Coll; 1995 Nov; 36(4):175-82. PubMed ID: 8689755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.
    Wang S; Ma Z; Liao Z; Song J; Yang K; Liu W
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():123-32. PubMed ID: 26354247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructures and Mechanical Properties of Laser-Sintered Commercially Pure Ti and Ti-6Al-4V Alloy for Dental Applications.
    Okazaki Y; Ishino A
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32013199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy.
    Cook SD; Thongpreda N; Anderson RC; Haddad RJ
    J Biomed Mater Res; 1988 Apr; 22(4):287-302. PubMed ID: 3372550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.
    Guitar A; Vigna G; Luppo MI
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):156-63. PubMed ID: 19627819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of microporous NiTi by transient liquid phase sintering of elemental powders.
    Ismail MH; Goodall R; Davies HA; Todd I
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1480-5. PubMed ID: 24364948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications.
    Elias KL; Daehn GS; Brantley WA; McGlumphy EA
    J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tribological behavior study on Ti-Nb-Sn/hydroxyapatite composites in simulated body fluid solution.
    Chen Y; Wang X; Xu L; Liu Z; Kee do W
    J Mech Behav Biomed Mater; 2012 Jun; 10():97-107. PubMed ID: 22520422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP).
    Lin Z; Wang L; Xue X; Lu W; Qin J; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4551-61. PubMed ID: 24094159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications.
    Barreiro MM; Grana DR; Kokubu GA; Luppo MI; Mintzer S; Vigna G
    Biomed Mater; 2010 Apr; 5(2):25010. PubMed ID: 20348603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterisation of low-cost powder metallurgy Ti-xCu-2.5Al alloys produced for biomedical applications.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2022 Feb; 126():105022. PubMed ID: 34871955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.
    Xu W; Li M; Wen C; Lv S; Liu C; Lu X; Qu X
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29601517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys.
    Gabriel SB; Nunes CA; Soares Gde A
    Artif Organs; 2008 Apr; 32(4):299-304. PubMed ID: 18370944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth.
    Janeček M; Nový F; Stráský J; Harcuba P; Wagner L
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):417-22. PubMed ID: 21316629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.