These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22963747)

  • 1. Roughness evolution of metallic implant surfaces under contact loading and nanometer-scale chemical etching.
    Ryu JJ; Letchuman S; Shrotriya P
    J Mech Behav Biomed Mater; 2012 Oct; 14():55-66. PubMed ID: 22963747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical load-assisted dissolution of metallic implant surfaces: influence of contact loads and surface stress state.
    Mitchell A; Shrotriya P
    Acta Biomater; 2008 Mar; 4(2):296-304. PubMed ID: 17901005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life expectancy of modular Ti6Al4V hip implants: influence of stress and environment.
    Chandra A; Ryu JJ; Karra P; Shrotriya P; Tvergaard V; Gaisser M; Weik T
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1990-2001. PubMed ID: 22098898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.
    Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R
    Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fretting corrosion of CoCrMo and Ti6Al4V interfaces.
    Swaminathan V; Gilbert JL
    Biomaterials; 2012 Aug; 33(22):5487-503. PubMed ID: 22575833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meniscus and viscous forces during separation of hydrophilic and hydrophobic smooth/rough surfaces with symmetric and asymmetric contact angles.
    Cai S; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1627-47. PubMed ID: 18192167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of superficial roughness and design on the primary stability of dental implants.
    Dos Santos MV; Elias CN; Cavalcanti Lima JH
    Clin Implant Dent Relat Res; 2011 Sep; 13(3):215-23. PubMed ID: 19744197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla.
    Trisi P; Lazzara R; Rebaudi A; Rao W; Testori T; Porter SS
    J Periodontol; 2003 Jul; 74(7):945-56. PubMed ID: 12931756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque.
    Elias CN; Oshida Y; Lima JH; Muller CA
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):234-42. PubMed ID: 19627788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-mode failure strength of implant-cement interface specimens with varying surface roughness.
    Zelle J; Janssen D; Peeters S; Brouwer C; Verdonschot N
    J Biomech; 2011 Feb; 44(4):780-3. PubMed ID: 21074772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface treatments on the fatigue life of titanium for biomedical applications.
    Pazos L; Corengia P; Svoboda H
    J Mech Behav Biomed Mater; 2010 Aug; 3(6):416-24. PubMed ID: 20621024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roughness assessment and wetting behavior of fluorocarbon surfaces.
    Terriza A; Álvarez R; Borrás A; Cotrino J; Yubero F; González-Elipe AR
    J Colloid Interface Sci; 2012 Jun; 376(1):274-82. PubMed ID: 22483335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arachidonic acid and prostaglandin E2 influence human osteoblast (MG63) response to titanium surface roughness.
    Dean DD; Campbell CM; Gruwell SF; Tindall JW; Chuang HH; Zhong W; Schmitz JP; Sylvia VL
    J Oral Implantol; 2008; 34(6):303-12. PubMed ID: 19133484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biodeterioration and corrosion of metallic implants and prostheses].
    López GD
    Medicina (B Aires); 1993; 53(3):260-74. PubMed ID: 8114635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a nanometer roughness scale resorbable media-processed surface: a study in dogs.
    Marin C; Granato R; Bonfante EA; Suzuki M; Janal MN; Coelho PG
    Clin Oral Implants Res; 2012 Jan; 23(1):119-24. PubMed ID: 21518007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of five different implant surfaces and their effect on osseointegration: a study in dogs.
    Coelho PG; Bonfante EA; Pessoa RS; Marin C; Granato R; Giro G; Witek L; Suzuki M
    J Periodontol; 2011 May; 82(5):742-50. PubMed ID: 21054223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of loading conditions on fatigue-failed implants by fracture surface analysis.
    Huang HM; Tsai CM; Chang CC; Lin CT; Lee SY
    Int J Oral Maxillofac Implants; 2005; 20(6):854-9. PubMed ID: 16392341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of implant surface roughness and stiffness of grafted bone on an immediately loaded maxillary implant: a 3D numerical analysis.
    Huang HL; Fuh LJ; Hsu JT; Tu MG; Shen YW; Wu CL
    J Oral Rehabil; 2008 Apr; 35(4):283-90. PubMed ID: 18321264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic modelling of crack propagation in a randomly rough nano-scale metallic surface.
    Behzadi Sh; Rafii-Tabar H
    J Mol Graph Model; 2008 Oct; 27(3):356-63. PubMed ID: 18656404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.