These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 22964393)

  • 1. In-vivo biodegradation of extruded lipid implants in rabbits.
    Sax G; Kessler B; Wolf E; Winter G
    J Control Release; 2012 Oct; 163(2):195-202. PubMed ID: 22964393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants.
    Sax G; Winter G
    J Control Release; 2012 Oct; 163(2):187-94. PubMed ID: 22964391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the lipase-induced degradation of lipid-based drug delivery systems. Part II - Investigations on the mechanisms leading to collapse of the lipid structure.
    Schwab M; McGoverin CM; Gordon KC; Winter G; Rades T; Myschik J; Strachan CJ
    Eur J Pharm Biopharm; 2013 Aug; 84(3):456-63. PubMed ID: 23385286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid lipid extrusion of sustained release dosage forms.
    Reitz C; Kleinebudde P
    Eur J Pharm Biopharm; 2007 Sep; 67(2):440-8. PubMed ID: 17481868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailor-made dissolution profiles by extruded matrices based on lipid polyethylene glycol mixtures.
    Windbergs M; Strachan CJ; Kleinebudde P
    J Control Release; 2009 Aug; 137(3):211-6. PubMed ID: 19358867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into process understanding of solid lipid extrusion (SLE) of extruded lipid implants for sustained protein delivery.
    Vollrath M; Engert J; Winter G
    Eur J Pharm Biopharm; 2018 Sep; 130():11-21. PubMed ID: 29913270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution.
    Windbergs M; Strachan CJ; Kleinebudde P
    Eur J Pharm Biopharm; 2009 Jan; 71(1):80-7. PubMed ID: 18588976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of structural variations on drug release from lipid/polyethylene glycol matrices.
    Windbergs M; Strachan CJ; Kleinebudde P
    Eur J Pharm Sci; 2009 Jul; 37(5):555-62. PubMed ID: 19406229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on preparation of ligustrazine ocular implant and correlation between in vivo and in vitro drug release].
    Wei JH; Li P; Ma PK; Mu HJ; Chen DQ; Sun KX
    Zhongguo Zhong Yao Za Zhi; 2013 Apr; 38(8):1160-4. PubMed ID: 23944029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the lipase induced degradation of lipid based drug delivery systems.
    Schwab M; Sax G; Schulze S; Winter G
    J Control Release; 2009 Nov; 140(1):27-33. PubMed ID: 19619592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release pathways of interferon α2a molecules from lipid twin screw extrudates revealed by single molecule fluorescence microscopy.
    Sax G; Feil F; Schulze S; Jung C; Bräuchle C; Winter G
    J Control Release; 2012 Sep; 162(2):295-302. PubMed ID: 22820452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of implant composition of twin-screw extruded lipid implants on the release behavior.
    Even MP; Bobbala S; Kooi KL; Hook S; Winter G; Engert J
    Int J Pharm; 2015 Sep; 493(1-2):102-10. PubMed ID: 26188320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt extruded helical waxy matrices as a new sustained drug delivery system.
    Hasa D; Perissutti B; Grassi M; Zacchigna M; Pagotto M; Lenaz D; Kleinebudde P; Voinovich D
    Eur J Pharm Biopharm; 2011 Nov; 79(3):592-600. PubMed ID: 21827851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal growth formation in melt extrudates.
    Bruce C; Fegely KA; Rajabi-Siahboomi AR; McGinity JW
    Int J Pharm; 2007 Aug; 341(1-2):162-72. PubMed ID: 17524578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid.
    Attama AA; Müller-Goymann CC
    Int J Pharm; 2007 Apr; 334(1-2):179-89. PubMed ID: 17140752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the aging of silicone breast implants using 29Si, 1H relaxation and DSC measurements.
    Birkefeld AB; Eckert H; Pfleiderer B
    Biomaterials; 2004 Aug; 25(18):4405-13. PubMed ID: 15046931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of lipid aspirin sustained-release pellets by solvent-free extrusion/spheronization and an investigation of their stability.
    Yan X; He H; Meng J; Zhang C; Hong M; Tang X
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1221-9. PubMed ID: 22713120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model.
    Yang JX; Cui FZ; Lee IS; Zhang Y; Yin QS; Xia H; Yang SX
    J Biomater Appl; 2012 Aug; 27(2):153-64. PubMed ID: 21363872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature scanning ultrasonic velocity study of complex thermal transformations in solid lipid nanoparticles.
    Awad TS; Helgason T; Kristbergsson K; Weiss J; Decker EA; McClements DJ
    Langmuir; 2008 Nov; 24(22):12779-84. PubMed ID: 18925768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids.
    Guse C; Koennings S; Maschke A; Hacker M; Becker C; Schreiner S; Blunk T; Spruss T; Goepferich A
    Int J Pharm; 2006 May; 314(2):153-60. PubMed ID: 16517106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.