These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22965118)

  • 1. Solitary restriction endonucleases in prokaryotic genomes.
    Ershova AS; Karyagina AS; Vasiliev MO; Lyashchuk AM; Lunin VG; Spirin SA; Alexeevski AV
    Nucleic Acids Res; 2012 Nov; 40(20):10107-15. PubMed ID: 22965118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REBASE--enzymes and genes for DNA restriction and modification.
    Roberts RJ; Vincze T; Posfai J; Macelis D
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D269-70. PubMed ID: 17202163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.
    Roberts RJ; Vincze T; Posfai J; Macelis D
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D234-6. PubMed ID: 19846593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. REBASE: restriction enzymes and methyltransferases.
    Roberts RJ; Vincze T; Posfai J; Macelis D
    Nucleic Acids Res; 2003 Jan; 31(1):418-20. PubMed ID: 12520038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. REBASE--restriction enzymes and DNA methyltransferases.
    Roberts RJ; Vincze T; Posfai J; Macelis D
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D230-2. PubMed ID: 15608184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.
    Roberts RJ; Vincze T; Posfai J; Macelis D
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D298-9. PubMed ID: 25378308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. REBASE--restriction enzymes and methylases.
    Roberts RJ; Macelis D
    Nucleic Acids Res; 2001 Jan; 29(1):268-9. PubMed ID: 11125108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons.
    Mruk I; Kaczorowski T; Witczak A
    Sci Rep; 2019 Apr; 9(1):5808. PubMed ID: 30967604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fused eco29kIR- and M genes coding for a fully functional hybrid polypeptide as a model of molecular evolution of restriction-modification systems.
    Mokrishcheva ML; Solonin AS; Nikitin DV
    BMC Evol Biol; 2011 Feb; 11():35. PubMed ID: 21291520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family.
    Zylicz-Stachula A; Bujnicki JM; Skowron PM
    BMC Mol Biol; 2009 May; 10():52. PubMed ID: 19480701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REBASE-restriction enzymes and methylases.
    Roberts RJ; Macelis D
    Nucleic Acids Res; 1999 Jan; 27(1):312-3. PubMed ID: 9847213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome.
    Kong H; Lin LF; Porter N; Stickel S; Byrd D; Posfai J; Roberts RJ
    Nucleic Acids Res; 2000 Sep; 28(17):3216-23. PubMed ID: 10954588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for horizontal transfer of SsuDAT1I restriction-modification genes to the Streptococcus suis genome.
    Sekizaki T; Otani Y; Osaki M; Takamatsu D; Shimoji Y
    J Bacteriol; 2001 Jan; 183(2):500-11. PubMed ID: 11133943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary relationship of Alw26I, Eco31I and Esp3I, restriction endonucleases that recognise overlapping sequences.
    Bitinaite J; Mitkaite G; Dauksaite V; Jakubauskas A; Timinskas A; Vaisvila R; Lubys A; Janulaitis A
    Mol Genet Genomics; 2002 Jul; 267(5):664-72. PubMed ID: 12172806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restriction endonucleases: classification, properties, and applications.
    Williams RJ
    Mol Biotechnol; 2003 Mar; 23(3):225-43. PubMed ID: 12665693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The restriction-modification system of Pasteurella haemolytica is a member of a new family of type I enzymes.
    Highlander SK; Garza O
    Gene; 1996 Oct; 178(1-2):89-96. PubMed ID: 8921897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation.
    Xue Q; Lv Y; Xu S; Zhang Y; Wang L; Li R; Yue Q; Li H; Gu X; Zhang S; Liu J
    Biosens Bioelectron; 2015 Apr; 66():547-53. PubMed ID: 25506903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nucleotide insertion between two adjacent methyltransferases in Helicobacter pylori results in a bifunctional DNA methyltransferase.
    Kumar R; Rao DN
    Biochem J; 2011 Feb; 433(3):487-95. PubMed ID: 21110832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. REBASE - restriction enzymes and methylases.
    Roberts RJ; Macelis D
    Nucleic Acids Res; 2000 Jan; 28(1):306-7. PubMed ID: 10592256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning the BstVI restriction-modification system in Escherichia coli.
    Vásquez C; Saavedra C; González E
    Gene; 1991 Jun; 102(1):83-5. PubMed ID: 1864512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.