These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22965119)

  • 21. A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae.
    Reineke LC; Komar AA; Caprara MG; Merrick WC
    J Biol Chem; 2008 Jul; 283(27):19011-25. PubMed ID: 18460470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity.
    Nedialkova DD; Leidel SA
    Cell; 2015 Jun; 161(7):1606-18. PubMed ID: 26052047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mitochondrial translation system.
    Buetow DE; Wood WM
    Subcell Biochem; 1978; 5():1-85. PubMed ID: 97811
    [No Abstract]   [Full Text] [Related]  

  • 24. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
    Riba A; Di Nanni N; Mittal N; Arhné E; Schmidt A; Zavolan M
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15023-15032. PubMed ID: 31292258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Requirements for the initiation of polyphenylalanine synthesis by recombined ribosomal subunits from yeast.
    Pranger MH; Roos MH; Van der Zeijst BA; Bloemers HP
    Mol Biol Rep; 1974 Mar; 1(6):321-7. PubMed ID: 4372524
    [No Abstract]   [Full Text] [Related]  

  • 26. Inhibition of translation in eukaryotic systems by harringtonine.
    Fresno M; Jiménez A; Vázquez D
    Eur J Biochem; 1977 Jan; 72(2):323-30. PubMed ID: 319998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translational control by internal ribosome entry site in Saccharomyces cerevisiae.
    Seino A; Yanagida Y; Aizawa M; Kobatake E
    Biochim Biophys Acta; 2005 Jan; 1681(2-3):166-74. PubMed ID: 15627508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosome concentration contributes to discrimination against poly(A)- mRNA during translation initiation in Saccharomyces cerevisiae.
    Proweller A; Butler JS
    J Biol Chem; 1997 Feb; 272(9):6004-10. PubMed ID: 9038222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inferring efficiency of translation initiation and elongation from ribosome profiling.
    Szavits-Nossan J; Ciandrini L
    Nucleic Acids Res; 2020 Sep; 48(17):9478-9490. PubMed ID: 32821926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A role for codon order in translation dynamics.
    Cannarozzi G; Schraudolph NN; Faty M; von Rohr P; Friberg MT; Roth AC; Gonnet P; Gonnet G; Barral Y
    Cell; 2010 Apr; 141(2):355-67. PubMed ID: 20403329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. eEF1A: thinking outside the ribosome.
    Mateyak MK; Kinzy TG
    J Biol Chem; 2010 Jul; 285(28):21209-13. PubMed ID: 20444696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ribosome recycling induces optimal translation rate at low ribosomal availability.
    Marshall E; Stansfield I; Romano MC
    J R Soc Interface; 2014 Sep; 11(98):20140589. PubMed ID: 25008084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian In Vitro Translation Systems.
    Gonskikh Y; Pecoraro V; Polacek N
    Methods Mol Biol; 2022; 2428():101-111. PubMed ID: 35171476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Principles of cellular resource allocation revealed by condition-dependent proteome profiling.
    Metzl-Raz E; Kafri M; Yaakov G; Soifer I; Gurvich Y; Barkai N
    Elife; 2017 Aug; 6():. PubMed ID: 28857745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual functions of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors.
    Janosi L; Ricker R; Kaji A
    Biochimie; 1996; 78(11-12):959-69. PubMed ID: 9150873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast.
    Berthelot K; Muldoon M; Rajkowitsch L; Hughes J; McCarthy JE
    Mol Microbiol; 2004 Feb; 51(4):987-1001. PubMed ID: 14763975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutants of eukaryotic initiation factor eIF-4E with altered mRNA cap binding specificity reprogram mRNA selection by ribosomes in Saccharomyces cerevisiae.
    Vasilescu S; Ptushkina M; Linz B; Müller PP; McCarthy JE
    J Biol Chem; 1996 Mar; 271(12):7030-7. PubMed ID: 8636134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverted translational control of eukaryotic gene expression by ribosome collisions.
    Park H; Subramaniam AR
    PLoS Biol; 2019 Sep; 17(9):e3000396. PubMed ID: 31532761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of translation initiation factor 5 (eIF5) from Saccharomyces cerevisiae. Functional homology with mammalian eIF5 and the effect of depletion of eIF5 on protein synthesis in vivo and in vitro.
    Maiti T; Maitra U
    J Biol Chem; 1997 Jul; 272(29):18333-40. PubMed ID: 9218474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae.
    Iizuka N; Najita L; Franzusoff A; Sarnow P
    Mol Cell Biol; 1994 Nov; 14(11):7322-30. PubMed ID: 7935446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.