These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 22965145)
21. SHEsisEpi, a GPU-enhanced genome-wide SNP-SNP interaction scanning algorithm, efficiently reveals the risk genetic epistasis in bipolar disorder. Hu X; Liu Q; Zhang Z; Li Z; Wang S; He L; Shi Y Cell Res; 2010 Jul; 20(7):854-7. PubMed ID: 20502444 [No Abstract] [Full Text] [Related]
22. Variation explained in mixed-model association mapping. Sun G; Zhu C; Kramer MH; Yang SS; Song W; Piepho HP; Yu J Heredity (Edinb); 2010 Oct; 105(4):333-40. PubMed ID: 20145669 [TBL] [Abstract][Full Text] [Related]
23. Epistasis in quantitative trait locus linkage analysis: interaction or main effect? Purcell S; Sham PC Behav Genet; 2004 Mar; 34(2):143-52. PubMed ID: 14755179 [TBL] [Abstract][Full Text] [Related]
24. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Leem S; Jeong HH; Lee J; Wee K; Sohn KA Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733 [TBL] [Abstract][Full Text] [Related]
25. Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies. Stamp J; DenAdel A; Weinreich D; Crawford L G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37243672 [TBL] [Abstract][Full Text] [Related]
26. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies. Zhang W; Dai X; Wang Q; Xu S; Zhao PX PLoS Comput Biol; 2016 May; 12(5):e1004925. PubMed ID: 27224861 [TBL] [Abstract][Full Text] [Related]
27. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139 [TBL] [Abstract][Full Text] [Related]
28. Selective genotyping and phenotyping strategies in a complex trait context. Sen S; Johannes F; Broman KW Genetics; 2009 Apr; 181(4):1613-26. PubMed ID: 19153260 [TBL] [Abstract][Full Text] [Related]
29. Disease liability prediction from large scale genotyping data using classifiers with a reject option. Quevedo JR; Bahamonde A; Pérez-Enciso M; Luaces O IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):88-97. PubMed ID: 21383414 [TBL] [Abstract][Full Text] [Related]
30. Aggregation of experts: an application in the field of "interactomics" (detection of interactions on the basis of genomic data). Abo Alchamlat S; Farnir F BMC Bioinformatics; 2018 Nov; 19(1):445. PubMed ID: 30497383 [TBL] [Abstract][Full Text] [Related]
31. Machine learning approaches for the discovery of gene-gene interactions in disease data. Upstill-Goddard R; Eccles D; Fliege J; Collins A Brief Bioinform; 2013 Mar; 14(2):251-60. PubMed ID: 22611119 [TBL] [Abstract][Full Text] [Related]
33. A novel two-stage approach for epistasis detection in genome-wide case-control studies. Liao Z; Zeng Q; Liao B; Li X Biochem Genet; 2014 Oct; 52(9-10):403-14. PubMed ID: 24880910 [TBL] [Abstract][Full Text] [Related]
34. Next-Gen GWAS: full 2D epistatic interaction maps retrieve part of missing heritability and improve phenotypic prediction. Carré C; Carluer JB; Chaux C; Estoup-Streiff C; Roche N; Hosy E; Mas A; Krouk G Genome Biol; 2024 Mar; 25(1):76. PubMed ID: 38523316 [TBL] [Abstract][Full Text] [Related]
35. A deep hybrid model to detect multi-locus interacting SNPs in the presence of noise. Uppu S; Krishna A Int J Med Inform; 2018 Nov; 119():134-151. PubMed ID: 30342681 [TBL] [Abstract][Full Text] [Related]