These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 22965189)
21. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation. Ma L; Li C; Yang Z; Jia W; Zhang D; Chen S J Biotechnol; 2013 Jul; 166(4):192-7. PubMed ID: 23702163 [TBL] [Abstract][Full Text] [Related]
22. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Li J; Jaitzig J; Lu P; Süssmuth RD; Neubauer P Microb Cell Fact; 2015 Jun; 14():83. PubMed ID: 26063334 [TBL] [Abstract][Full Text] [Related]
23. [Effects of nutrient conditions and fed-batch culture on CoQ10 production by Rhizobium radiobacter WSH2601]. Zu-Fan W; Du GC; Chen J Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):212-6. PubMed ID: 15966324 [TBL] [Abstract][Full Text] [Related]
24. Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Yildirim S; Konrad D; Calvez S; Drider D; Prévost H; Lacroix C Appl Microbiol Biotechnol; 2007 Dec; 77(3):525-31. PubMed ID: 17882416 [TBL] [Abstract][Full Text] [Related]
25. Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris. Zheng J; Zhao W; Guo N; Lin F; Tian J; Wu L; Zhou H Bioresour Technol; 2012 Aug; 118():257-64. PubMed ID: 22705532 [TBL] [Abstract][Full Text] [Related]
26. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Lee WH; Chin YW; Han NS; Kim MD; Seo JH Appl Microbiol Biotechnol; 2011 Aug; 91(4):967-76. PubMed ID: 21538115 [TBL] [Abstract][Full Text] [Related]
27. Enhanced phenylpyruvic acid production with Proteus vulgaris in fed-batch and continuous fermentation. Coban HB; Demirci A; Patterson PH; Elias RJ Prep Biochem Biotechnol; 2016; 46(2):157-60. PubMed ID: 25569523 [TBL] [Abstract][Full Text] [Related]
28. Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Yu Z; Du G; Zhou J; Chen J Bioresour Technol; 2012 Jun; 114():597-602. PubMed ID: 22469647 [TBL] [Abstract][Full Text] [Related]
29. Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy. Li X; Lin Y; Chang M; Jin Q; Wang X Bioresour Technol; 2015 Apr; 181():275-82. PubMed ID: 25661306 [TBL] [Abstract][Full Text] [Related]
30. Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli. Faulkner E; Barrett M; Okor S; Kieran P; Casey E; Paradisi F; Engel P; Glennon B Biotechnol Prog; 2006; 22(3):889-97. PubMed ID: 16739976 [TBL] [Abstract][Full Text] [Related]
31. Plasmid DNA production with Escherichia coli GALG20, a pgi-gene knockout strain: fermentation strategies and impact on downstream processing. Gonçalves GA; Prather KL; Monteiro GA; Carnes AE; Prazeres DM J Biotechnol; 2014 Sep; 186():119-27. PubMed ID: 24995846 [TBL] [Abstract][Full Text] [Related]
32. Plasmid DNA fermentation strategies: influence on plasmid stability and cell physiology. Silva F; Queiroz JA; Domingues FC Appl Microbiol Biotechnol; 2012 Mar; 93(6):2571-80. PubMed ID: 22089386 [TBL] [Abstract][Full Text] [Related]
34. Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation. Yao S; Zhao S; Lu Z; Gao Y; Lv F; Bie X Rev Argent Microbiol; 2015; 47(4):344-9. PubMed ID: 26655454 [TBL] [Abstract][Full Text] [Related]
35. Statistical medium optimization and DO-STAT fed-batch fermentation for enhanced production of tyrosine phenol lyase in recombinant Escherichia coli. Tang XL; Wang ZC; Yang J; Zheng RC; Zheng YG Prep Biochem Biotechnol; 2019; 49(2):117-126. PubMed ID: 30689497 [TBL] [Abstract][Full Text] [Related]
36. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Oshiro M; Hanada K; Tashiro Y; Sonomoto K Appl Microbiol Biotechnol; 2010 Jul; 87(3):1177-85. PubMed ID: 20502892 [TBL] [Abstract][Full Text] [Related]
37. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Zhu L; Yang X; Xue C; Chen Y; Qu L; Lu W Bioresour Technol; 2012 Aug; 117():208-13. PubMed ID: 22613897 [TBL] [Abstract][Full Text] [Related]
38. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources. Jürgen B; Tobisch S; Wümpelmann M; Gördes D; Koch A; Thurow K; Albrecht D; Hecker M; Schweder T Biotechnol Bioeng; 2005 Nov; 92(3):277-98. PubMed ID: 16178035 [TBL] [Abstract][Full Text] [Related]
39. Production of ε-poly-L: -lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Chen XS; Li S; Liao LJ; Ren XD; Li F; Tang L; Zhang JH; Mao ZG Bioprocess Biosyst Eng; 2011 Jun; 34(5):561-7. PubMed ID: 21212985 [TBL] [Abstract][Full Text] [Related]
40. Effects of betaine supplementation on L-threonine fed-batch fermentation by Escherichia coli. Su Y; Guo QQ; Wang S; Zhang X; Wang J Bioprocess Biosyst Eng; 2018 Oct; 41(10):1509-1518. PubMed ID: 30062600 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]