These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22965479)
1. Highly sensitive optical biosensor for thrombin based on structure switching aptamer-luminescent silica nanoparticles. Babu E; Mareeswaran PM; Rajagopal S J Fluoresc; 2013 Jan; 23(1):137-46. PubMed ID: 22965479 [TBL] [Abstract][Full Text] [Related]
2. Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Lin Z; Chen L; Zhu X; Qiu B; Chen G Chem Commun (Camb); 2010 Aug; 46(30):5563-5. PubMed ID: 20532276 [TBL] [Abstract][Full Text] [Related]
3. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Zhu X; Zhang Y; Yang W; Liu Q; Lin Z; Qiu B; Chen G Anal Chim Acta; 2011 Jan; 684(1-2):121-5. PubMed ID: 21167993 [TBL] [Abstract][Full Text] [Related]
4. A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Yue Q; Shen T; Wang L; Xu S; Li H; Xue Q; Zhang Y; Gu X; Zhang S; Liu J Biosens Bioelectron; 2014 Jun; 56():231-6. PubMed ID: 24508546 [TBL] [Abstract][Full Text] [Related]
5. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Jo H; Her J; Ban C Biosens Bioelectron; 2015 Sep; 71():129-136. PubMed ID: 25897882 [TBL] [Abstract][Full Text] [Related]
6. Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Song K; Kong X; Liu X; Zhang Y; Zeng Q; Tu L; Shi Z; Zhang H Chem Commun (Camb); 2012 Jan; 48(8):1156-8. PubMed ID: 22159457 [TBL] [Abstract][Full Text] [Related]
7. An aptamer-based assay for thrombin via structure switch based on gold nanoparticles and magnetic nanoparticles. Zheng J; Cheng GF; He PG; Fang YZ Talanta; 2010 Mar; 80(5):1868-72. PubMed ID: 20152425 [TBL] [Abstract][Full Text] [Related]
8. Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin. Yu J; Yang L; Liang X; Dong T; Liu H Analyst; 2015 Jun; 140(12):4114-20. PubMed ID: 25894923 [TBL] [Abstract][Full Text] [Related]
9. A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)(3)(2+)-doped silica nanoparticle ECL by ferrocene. Chen L; Cai Q; Luo F; Chen X; Zhu X; Qiu B; Lin Z; Chen G Chem Commun (Camb); 2010 Nov; 46(41):7751-3. PubMed ID: 20852786 [TBL] [Abstract][Full Text] [Related]
10. An aptamer-based biosensor for sensitive thrombin detection with phthalocyanine@SiO2 mesoporous nanoparticles. Jiang Z; Yang T; Liu M; Hu Y; Wang J Biosens Bioelectron; 2014 Mar; 53():340-5. PubMed ID: 24176970 [TBL] [Abstract][Full Text] [Related]
11. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Zhang J; Chen P; Wu X; Chen J; Xu L; Chen G; Fu F Biosens Bioelectron; 2011 Jan; 26(5):2645-50. PubMed ID: 21146976 [TBL] [Abstract][Full Text] [Related]
12. An off-on-off electrochemiluminescence approach for ultrasensitive detection of thrombin. Deng L; Du Y; Xu JJ; Chen HY Biosens Bioelectron; 2014 Sep; 59():58-63. PubMed ID: 24699694 [TBL] [Abstract][Full Text] [Related]
13. Electroluminescent aptasensor based on RuSiO Sha H; Zhang Y; Wang Y; Ke H; Xiong X; Xue H; Jia N Biosens Bioelectron; 2019 May; 132():203-209. PubMed ID: 30875632 [TBL] [Abstract][Full Text] [Related]
14. In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor. Liao Y; Yuan R; Chai Y; Zhuo Y; Yuan Y; Bai L; Mao L; Yuan S Biosens Bioelectron; 2011 Aug; 26(12):4815-8. PubMed ID: 21696941 [TBL] [Abstract][Full Text] [Related]
15. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Wang Y; Bao L; Liu Z; Pang DW Anal Chem; 2011 Nov; 83(21):8130-7. PubMed ID: 21923110 [TBL] [Abstract][Full Text] [Related]
16. Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods. Yasun E; Gulbakan B; Ocsoy I; Yuan Q; Shukoor MI; Li C; Tan W Anal Chem; 2012 Jul; 84(14):6008-15. PubMed ID: 22725611 [TBL] [Abstract][Full Text] [Related]
17. Selective recognition of co-assembled thrombin aptamer and docetaxel on mesoporous silica nanoparticles against tumor cell proliferation. Gao L; Cui Y; He Q; Yang Y; Fei J; Li J Chemistry; 2011 Nov; 17(47):13170-4. PubMed ID: 22012586 [No Abstract] [Full Text] [Related]
18. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)(3)(2+)-double-strand DNA composite film electrode. Yin XB; Xin YY; Zhao Y Anal Chem; 2009 Nov; 81(22):9299-305. PubMed ID: 19827791 [TBL] [Abstract][Full Text] [Related]
19. 4-(dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement. Gan X; Yuan R; Chai Y; Yuan Y; Mao L; Cao Y; Liao Y Biosens Bioelectron; 2012 Apr; 34(1):25-9. PubMed ID: 22387036 [TBL] [Abstract][Full Text] [Related]
20. Aptamer-based ATP assay using a luminescent light switching complex. Wang J; Jiang Y; Zhou C; Fang X Anal Chem; 2005 Jun; 77(11):3542-6. PubMed ID: 15924387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]