These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22965483)

  • 1. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions.
    Domínguez L; Morona R; González A; Moreno N
    J Comp Neurol; 2013 Mar; 521(4):725-59. PubMed ID: 22965483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions.
    Domínguez L; González A; Moreno N
    J Comp Neurol; 2014 Apr; 522(5):1102-31. PubMed ID: 24122702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers.
    Moreno N; Domínguez L; Morona R; González A
    J Comp Neurol; 2012 Feb; 520(3):453-78. PubMed ID: 21935937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach.
    Domínguez L; González A; Moreno N
    Front Neuroanat; 2015; 9():3. PubMed ID: 25691860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians.
    Moreno N; Morona R; López JM; Domínguez L; Joven A; Bandín S; González A
    J Comp Neurol; 2012 Feb; 520(2):330-63. PubMed ID: 21674496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics.
    López JM; Jiménez S; Morona R; Lozano D; Moreno N
    J Comp Neurol; 2022 Apr; 530(5):834-855. PubMed ID: 34547112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus.
    Moreno N; Domínguez L; Rétaux S; González A
    Neuroscience; 2008 Jul; 154(4):1423-39. PubMed ID: 18515014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonic hedgehog expression during Xenopus laevis forebrain development.
    Domínguez L; González A; Moreno N
    Brain Res; 2010 Aug; 1347():19-32. PubMed ID: 20540934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis.
    Domínguez L; González A; Moreno N
    Front Neuroanat; 2011; 5():11. PubMed ID: 21415915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved pattern of OTP-positive cells in the paraventricular nucleus and other hypothalamic sites of tetrapods.
    Bardet SM; Martinez-de-la-Torre M; Northcutt RG; Rubenstein JL; Puelles L
    Brain Res Bull; 2008 Mar; 75(2-4):231-5. PubMed ID: 18331876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution.
    van den Akker WM; Brox A; Puelles L; Durston AJ; Medina L
    J Comp Neurol; 2008 Jan; 506(2):211-23. PubMed ID: 18022953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-evaginated secondary prosencephalon of vertebrates.
    Moreno N; González A
    Front Neuroanat; 2011; 5():12. PubMed ID: 21427782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis.
    López JM; Morales L; González A
    Brain Behav Evol; 2016; 88(2):127-146. PubMed ID: 27771730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends.
    Santos-Durán GN; Ferreiro-Galve S; Menuet A; Quintana-Urzainqui I; Mazan S; Rodríguez-Moldes I; Candal E
    Front Neuroanat; 2016; 10():113. PubMed ID: 27932958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis.
    Bandín S; Morona R; González A
    Front Neuroanat; 2015; 9():107. PubMed ID: 26321920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization.
    Moreno N; González A
    J Comp Neurol; 2007 Aug; 503(6):815-31. PubMed ID: 17570503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon.
    Lauter G; Söll I; Hauptmann G
    J Comp Neurol; 2013 Apr; 521(5):1093-118. PubMed ID: 22949352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the genes GAD67 and Distal-less-4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods.
    Brox A; Puelles L; Ferreiro B; Medina L
    J Comp Neurol; 2003 Jun; 461(3):370-93. PubMed ID: 12746875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and connectivity of the lateral amygdala in anuran amphibians.
    Moreno N; González A
    J Comp Neurol; 2004 Nov; 479(2):130-48. PubMed ID: 15452828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Lrrn1 marks the prospective site of the zona limitans thalami in the early embryonic chicken diencephalon.
    García-Calero E; Garda AL; Marín F; Puelles L
    Gene Expr Patterns; 2006 Oct; 6(8):879-85. PubMed ID: 16631417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.