BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22965660)

  • 1. Evaluation of the performance characteristics of bilayer tablets: Part II. Impact of environmental conditions on the strength of bilayer tablets.
    Kottala N; Abebe A; Sprockel O; Bergum J; Nikfar F; Cuitiño AM
    AAPS PharmSciTech; 2012 Dec; 13(4):1190-6. PubMed ID: 22965660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the performance characteristics of bilayer tablets: Part I. Impact of material properties and process parameters on the strength of bilayer tablets.
    Kottala N; Abebe A; Sprockel O; Bergum J; Nikfar F; Cuitiño AM
    AAPS PharmSciTech; 2012 Dec; 13(4):1236-42. PubMed ID: 22976242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of compaction properties and interfacial topography on the performance of bilayer tablets.
    Kottala N; Abebe A; Sprockel O; Akseli I; Nikfar F; Cuitiño AM
    Int J Pharm; 2012 Oct; 436(1-2):171-8. PubMed ID: 22728259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.
    Zacour BM; Pandey P; Subramanian G; Gao JZ; Nikfar F
    Drug Dev Ind Pharm; 2014 Jun; 40(6):829-37. PubMed ID: 23638984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile and shear methods for measuring strength of bilayer tablets.
    Chang SY; Li JX; Sun CC
    Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimum Interfacial Bonding Strength for Bilayer Tablets Determined Using a Survival Test.
    Chang SY; Sun CC
    Pharm Res; 2019 Jul; 36(10):139. PubMed ID: 31359156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive evaluation of pharmaceutical properties of direct compression tablets containing theophylline anhydrate during storage at high humidity by near-infrared spectroscopy.
    Otsuka Y; Yamamoto M; Tanaka H; Otsuka M
    Biomed Mater Eng; 2015; 25(3):223-36. PubMed ID: 26407109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Surfactants on Itraconazole-Hydroxypropyl Methylcellulose Acetate Succinate Solid Dispersion Prepared by Hot Melt Extrusion III: Tableting of Extrudates and Drug Release From Tablets.
    Solanki NG; Kathawala M; Serajuddin ATM
    J Pharm Sci; 2019 Dec; 108(12):3859-3869. PubMed ID: 31542437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients.
    Jonat S; Hasenzahl S; Gray A; Schmidt PC
    Drug Dev Ind Pharm; 2005 Aug; 31(7):687-96. PubMed ID: 16207616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial bonding in formulated bilayer tablets.
    Chang SY; Sun CC
    Eur J Pharm Biopharm; 2020 Feb; 147():69-75. PubMed ID: 31870828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physico-Mechanical Properties of Coprocessed Excipient MicroceLac® 100 by DM(3) Approach.
    Haware RV; Kancharla JP; Udupa AK; Staton S; Gupta MR; Al-Achi A; Stagner WC
    Pharm Res; 2015 Nov; 32(11):3618-35. PubMed ID: 26055403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of physicochemical factors affecting the stability of a pH-modulated solid dispersion and a tablet during storage.
    Tran PH; Tran TT; Park JB; Min DH; Choi HG; Han HK; Rhee YS; Lee BJ
    Int J Pharm; 2011 Jul; 414(1-2):48-55. PubMed ID: 21565260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-solid interactions. III. Effect of glass transition temperature, Tg, and processing on tensile strength of compacts of lactose and lactose/polyvinyl pyrrolidone.
    Stubberud L; Arwidsson HG; Hjortsberg V; Graffner C
    Pharm Dev Technol; 1996 Jul; 1(2):195-204. PubMed ID: 9552346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of a new co-processed dry binder based on spray-dried lactose and microcrystalline cellulose.
    Mužíková J; Sináglová P
    Ceska Slov Farm; 2013 Jun; 62(3):127-31. PubMed ID: 23961814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the effect of environmental history on bilayer tablet interfacial shear strength.
    Klinzing G; Zavaliangos A
    Pharm Res; 2013 May; 30(5):1300-10. PubMed ID: 23334778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets.
    Castrati L; Mazel V; Busignies V; Diarra H; Rossi A; Colombo P; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):709-716. PubMed ID: 27717917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate.
    Hauschild K; Picker-Freyer KM
    Pharm Dev Technol; 2006 Feb; 11(1):125-40. PubMed ID: 16544916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The determination of the mechanical strength of tablets of different shapes.
    Davies PN; Worthington HE; Podczeck F; Newton JM
    Eur J Pharm Biopharm; 2007 Aug; 67(1):268-76. PubMed ID: 17329086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.
    Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F
    Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.