These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22965750)
1. Improving the capture of CO2 by substituted monoethanolamines: electronic effects of fluorine and methyl substituents. Gangarapu S; Marcelis AT; Zuilhof H Chemphyschem; 2012 Dec; 13(17):3973-80. PubMed ID: 22965750 [TBL] [Abstract][Full Text] [Related]
2. Carbamate stabilities of sterically hindered amines from quantum chemical methods: relevance for CO2 capture. Gangarapu S; Marcelis AT; Zuilhof H Chemphyschem; 2013 Dec; 14(17):3936-43. PubMed ID: 24203852 [TBL] [Abstract][Full Text] [Related]
3. Accurate pKa calculation of the conjugate acids of alkanolamines, alkaloids and nucleotide bases by quantum chemical methods. Gangarapu S; Marcelis AT; Zuilhof H Chemphyschem; 2013 Apr; 14(5):990-5. PubMed ID: 23436741 [TBL] [Abstract][Full Text] [Related]
4. A computational study of the heats of reaction of substituted monoethanolamine with CO2. Xie HB; Johnson JK; Perry RJ; Genovese S; Wood BR J Phys Chem A; 2011 Jan; 115(3):342-50. PubMed ID: 21174422 [TBL] [Abstract][Full Text] [Related]
5. Quantum chemical studies on solvents for post-combustion carbon dioxide capture: calculation of pKa and carbamate stability of disubstituted piperazines. Gangarapu S; Wierda GJ; Marcelis AT; Zuilhof H Chemphyschem; 2014 Jun; 15(9):1880-6. PubMed ID: 24782140 [TBL] [Abstract][Full Text] [Related]
6. The Transition States for CO2 Capture by Substituted Ethanolamines. Gangarapu S; Marcelis AT; Alhamed YA; Zuilhof H Chemphyschem; 2015 Oct; 16(14):3000-6. PubMed ID: 26285916 [TBL] [Abstract][Full Text] [Related]
7. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling. Xie HB; Zhou Y; Zhang Y; Johnson JK J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618 [TBL] [Abstract][Full Text] [Related]
8. Quantum chemical investigation on indole: vibrational force field and theoretical determination of its aqueous pK(a) value. Pietropolli Charmet A; Quartarone G; Ronchin L; Tortato C; Vavasori A J Phys Chem A; 2013 Aug; 117(31):6846-58. PubMed ID: 23899419 [TBL] [Abstract][Full Text] [Related]
9. Ab initio study of CO2 capture mechanisms in aqueous monoethanolamine: reaction pathways for the direct interconversion of carbamate and bicarbonate. Matsuzaki Y; Yamada H; Chowdhury FA; Higashii T; Onoda M J Phys Chem A; 2013 Sep; 117(38):9274-81. PubMed ID: 24003832 [TBL] [Abstract][Full Text] [Related]
10. An FTIR spectroscopic study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines. Robinson K; McCluskey A; Attalla MI Chemphyschem; 2011 Apr; 12(6):1088-99. PubMed ID: 21472963 [TBL] [Abstract][Full Text] [Related]
11. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves. Ess DH; Cook TC J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025 [TBL] [Abstract][Full Text] [Related]
12. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study of differential enthalpy of absorption of CO2 with MEA and MDEA as a function of temperature. Gupta M; da Silva EF; Hartono A; Svendsen HF J Phys Chem B; 2013 Aug; 117(32):9457-68. PubMed ID: 23855311 [TBL] [Abstract][Full Text] [Related]
14. Toward rational design of amines for CO2 capture: Substituent effect on kinetic process for the reaction of monoethanolamine with CO2. Xie H; Wang P; He N; Yang X; Chen J J Environ Sci (China); 2015 Nov; 37():75-82. PubMed ID: 26574090 [TBL] [Abstract][Full Text] [Related]
15. Transition states and energetics of nucleophilic additions of thiols to substituted α,β-unsaturated ketones: substituent effects involve enone stabilization, product branching, and solvation. Krenske EH; Petter RC; Zhu Z; Houk KN J Org Chem; 2011 Jun; 76(12):5074-81. PubMed ID: 21574592 [TBL] [Abstract][Full Text] [Related]
16. CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration. Hasib-ur-Rahman M; Larachi F Environ Sci Technol; 2012 Oct; 46(20):11443-50. PubMed ID: 22963662 [TBL] [Abstract][Full Text] [Related]
17. Capture and Release of CO₂ in Monoethanolamine Aqueous Solutions: New Insights from First-Principles Reaction Dynamics. Ma C; Pietrucci F; Andreoni W J Chem Theory Comput; 2015 Jul; 11(7):3189-98. PubMed ID: 26575756 [TBL] [Abstract][Full Text] [Related]
18. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture. Perinu C; Arstad B; Bouzga AM; Jens KJ J Phys Chem B; 2014 Aug; 118(34):10167-74. PubMed ID: 25093443 [TBL] [Abstract][Full Text] [Related]
19. The MC-DFT approach including the SCS-MP2 energies to the new Minnesota-type functionals. Liu PC; Hu WP J Comput Chem; 2014 Aug; 35(21):1560-7. PubMed ID: 24923999 [TBL] [Abstract][Full Text] [Related]
20. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines. Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M Environ Sci Technol; 2013 Jan; 47(2):1163-9. PubMed ID: 23190202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]