These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22965851)

  • 41. Inflorescence architecture affects pollinator behaviour and mating success in Spiranthes sinensis (Orchidaceae).
    Iwata T; Nagasaki O; Ishii HS; Ushimaru A
    New Phytol; 2012 Jan; 193(1):196-203. PubMed ID: 21919912
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The evolution of floral deception in Epipactis veratrifolia (Orchidaceae): from indirect defense to pollination.
    Jin XH; Ren ZX; Xu SZ; Wang H; Li DZ; Li ZY
    BMC Plant Biol; 2014 Mar; 14():63. PubMed ID: 24621377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local plant density, pollination and trait-fitness relationships in a perennial herb.
    Weber A; Kolb A
    Plant Biol (Stuttg); 2013 Mar; 15(2):335-43. PubMed ID: 22882317
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pollinator shifts drive petal epidermal evolution on the Macaronesian Islands bird-flowered species.
    Ojeda DI; Valido A; Fernández de Castro AG; Ortega-Olivencia A; Fuertes-Aguilar J; Carvalho JA; Santos-Guerra A
    Biol Lett; 2016 Apr; 12(4):. PubMed ID: 27122008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patterns and drivers of heat production in the plant genus Amorphophallus.
    Claudel C; Loiseau O; Silvestro D; Lev-Yadun S; Antonelli A
    Plant J; 2023 Aug; 115(4):874-894. PubMed ID: 37340521
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complex interactions underlie the correlated evolution of floral traits and their association with pollinators in a clade with diverse pollination systems.
    Rose JP; Sytsma KJ
    Evolution; 2021 Jun; 75(6):1431-1449. PubMed ID: 33818785
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of pollination niches in a generalist plant clade.
    Gómez JM; Perfectti F; Abdelaziz M; Lorite J; Muñoz-Pajares AJ; Valverde J
    New Phytol; 2015 Jan; 205(1):440-53. PubMed ID: 25252267
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatiotemporal variation in the pollination systems of a supergeneralist plant: is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators?
    Zych M; Junker RR; Nepi M; Stpiczynska M; Stolarska B; Roguz K
    Ann Bot; 2019 Jan; 123(2):415-428. PubMed ID: 30059963
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation.
    Ollerton J; Diaz A
    Oecologia; 1999 May; 119(3):340-348. PubMed ID: 28307756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inflorescence dimorphism, heterodichogamy and thrips pollination in Platycarya strobilacea (Juglandaceae).
    Fukuhara T; Tokumaru S
    Ann Bot; 2014 Feb; 113(3):467-76. PubMed ID: 24305967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasticity in floral longevity and sex-phase duration of Lobelia siphilitica in response to simulated pollinator declines.
    Lee KJ; Caruso CM
    Am J Bot; 2022 Apr; 109(4):526-534. PubMed ID: 35253215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae.
    Maia AC; Dötterl S; Kaiser R; Silberbauer-Gottsberger I; Teichert H; Gibernau M; do Amaral Ferraz Navarro DM; Schlindwein C; Gottsberger G
    J Chem Ecol; 2012 Sep; 38(9):1072-80. PubMed ID: 22918609
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pollinator shifts, contingent evolution, and evolutionary constraint drive floral disparity in Salvia (Lamiaceae): Evidence from morphometrics and phylogenetic comparative methods.
    Kriebel R; Drew B; González-Gallegos JG; Celep F; Heeg L; Mahdjoub MM; Sytsma KJ
    Evolution; 2020 Jul; 74(7):1335-1355. PubMed ID: 32484910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Floral adaptation to local pollinator guilds in a terrestrial orchid.
    Sun M; Gross K; Schiestl FP
    Ann Bot; 2014 Jan; 113(2):289-300. PubMed ID: 24107683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A commentary on: 'Divergence in floral scent and morphology, but not thermogenic traits, associated with pollinator shift in two brood-site-mimicking Typhonium (Araceae) species'.
    Rands SA
    Ann Bot; 2021 Aug; 128(3):i-ii. PubMed ID: 34180513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of inflorescence size on sexual expression and female reproductive success in a monoecious species.
    Torices R; Méndez M
    Plant Biol (Stuttg); 2011 Jan; 13 Suppl 1():78-85. PubMed ID: 21134090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coevolutionary elaboration of pollination-related traits in an alpine ginger (Roscoea purpurea) and a tabanid fly in the Nepalese Himalayas.
    Paudel BR; Shrestha M; Burd M; Adhikari S; Sun YS; Li QJ
    New Phytol; 2016 Sep; 211(4):1402-11. PubMed ID: 27112321
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd.
    Sun C; Yu G; Bao M; Zheng B; Ning G
    BMC Res Notes; 2014 Jun; 7():402. PubMed ID: 24969969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae).
    Tripp EA; Manos PS
    Evolution; 2008 Jul; 62(7):1712-1737. PubMed ID: 18410536
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative analysis of pollinator type and pollen ornamentation in the Araceae and the Arecaceae, two unrelated families of the monocots.
    Sannier J; Baker WJ; Anstett MC; Nadot S
    BMC Res Notes; 2009 Jul; 2():145. PubMed ID: 19624836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.