These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22966569)

  • 21. Effective Schottky barrier lowering of NiGe/p-Ge(100) using Terbium interlayer structure for high performance p-type MOSFETs.
    Eadi SB; Lee JC; Song HS; Oh J; Lee GW; Lee HD
    Sci Rep; 2020 Mar; 10(1):4054. PubMed ID: 32132595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment.
    Yoon YG; Kim TK; Hwang IC; Lee HS; Hwang BW; Moon JM; Seo YJ; Lee SW; Jo MH; Lee SH
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3150-5. PubMed ID: 24547762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poole-Frenkel effect in sputter-deposited CuAlO(2+x) nanocrystals.
    Banerjee AN; Joo SW
    Nanotechnology; 2013 Apr; 24(16):165705. PubMed ID: 23535666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of Fermi-Level Pinning and Contact Resistivity in Ti/Ge Contact Using Carbon Implantation.
    Park I; Lee D; Jin B; Kim J; Lee JS
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel high-low-high Schottky barrier based bidirectional tunnel field effect transistor.
    Jin X; Zhang S; Li M; Liu X; Li M
    Heliyon; 2023 Mar; 9(3):e13809. PubMed ID: 36895395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Schottky barrier thin film transistors using solution-processed n-ZnO.
    Adl AH; Ma A; Gupta M; Benlamri M; Tsui YY; Barlage DW; Shankar K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1423-8. PubMed ID: 22387678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective Schottky Barrier Height Lowering of Metal/n-Ge with a TiO
    Kim GS; Kim SW; Kim SH; Park J; Seo Y; Cho BJ; Shin C; Shim JH; Yu HY
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35419-35425. PubMed ID: 27977113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charge conduction and breakdown mechanisms in self-assembled nanodielectrics.
    DiBenedetto SA; Facchetti A; Ratner MA; Marks TJ
    J Am Chem Soc; 2009 May; 131(20):7158-68. PubMed ID: 19408943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical characteristics and stability of gold and palladium Schottky contacts on ZnO nanorods.
    Klason P; Nur O; Willander M
    Nanotechnology; 2008 Nov; 19(47):475202. PubMed ID: 21836267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scalable Memdiodes Exhibiting Rectification and Hysteresis for Neuromorphic Computing.
    Shank JC; Tellekamp MB; Wahila MJ; Howard S; Weidenbach AS; Zivasatienraj B; Piper LFJ; Doolittle WA
    Sci Rep; 2018 Aug; 8(1):12935. PubMed ID: 30154545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave Annealing for NiSiGe Schottky Junction on SiGe P-Channel.
    Lin YH; Tsai YH; Hsu CC; Luo GL; Lee YJ; Chien CH
    Materials (Basel); 2015 Nov; 8(11):7519-7523. PubMed ID: 28793654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal endurance and microstructural evolution of PtGe for high-performance nano-scale Ge-on-Si MOSFETS.
    Kang MH; Shin HS; Oh SK; Yoo JH; Lee GW; Oh JW; Majhi P; Jammy R; Lee HD
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5633-9. PubMed ID: 22121583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dependence of the Schottky barrier height on carbon nanotube diameter for Pd-carbon nanotube contacts.
    Svensson J; Sourab AA; Tarakanov Y; Lee DS; Park SJ; Baek SJ; Park YW; Campbell EE
    Nanotechnology; 2009 Apr; 20(17):175204. PubMed ID: 19420588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and Al
    Li CY; Cheng MY; Houng MP; Yang CF; Liu J
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29316726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.
    Lee SY; Kim TH; Chol NK; Seong HK; Choi HJ; Ahn BG; Lee SK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5042-6. PubMed ID: 19198387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current transport mechanism in a metal-GaN nanowire Schottky diode.
    Lee SY; Lee SK
    Nanotechnology; 2007 Dec; 18(49):495701. PubMed ID: 20442482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical Transport Properties of Au Nanoparticles and Thin Films on Ge Probed Using a Conducting Atomic Force Microscope.
    Guo E; Zeng Z; Shi X; Long X; Wang X
    Langmuir; 2016 Oct; 32(41):10589-10596. PubMed ID: 27642768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural, chemical, and electrical parameters of Au/MoS
    Padma R; Lee G; Kang JS; Jun SC
    J Colloid Interface Sci; 2019 Aug; 550():48-56. PubMed ID: 31051340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive analysis of current leakage at individual screw and mixed threading dislocations in freestanding GaN substrates.
    Hamachi T; Tohei T; Hayashi Y; Imanishi M; Usami S; Mori Y; Sakai A
    Sci Rep; 2023 Feb; 13(1):2436. PubMed ID: 36765088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical characterization of n/p-type nickel silicide/silicon junctions by Sb segregation.
    Jun M; Park Y; Hyun Y; Choi SJ; Zyung T; Jang M
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7339-42. PubMed ID: 22103191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.