These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22966594)

  • 1. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.
    Kim Y; Lam ND; Kim K; Kim S; Rotermund F; Lim H; Lee J
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5479-83. PubMed ID: 22966594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ge Solar Cells with Micro-Rod Arrays: Structural and Optical Properties.
    Yun Y; Kim K; Lee J
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4347-4352. PubMed ID: 33714326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells.
    Chao JJ; Shiu SC; Hung SC; Lin CF
    Nanotechnology; 2010 Jul; 21(28):285203. PubMed ID: 20562485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embossed Mie resonator arrays composed of compacted TiO
    Visser D; Chen DY; Désières Y; Ravishankar AP; Anand S
    Sci Rep; 2020 Jul; 10(1):12527. PubMed ID: 32719504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.
    Song Y; Choi K; Jun DH; Oh J
    Opt Express; 2017 Oct; 25(20):23862-23872. PubMed ID: 29041335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study.
    Dawi EA; Karar AA; Mustafa E; Nur O
    Nanoscale Res Lett; 2021 Sep; 16(1):149. PubMed ID: 34542730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures.
    Lee K; Hwang I; Kim N; Choi D; Um HD; Kim S; Seo K
    Nanoscale; 2016 Aug; 8(30):14473-9. PubMed ID: 27405387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
    Moon S; Kim K; Kim Y; Heo J; Lee J
    Sci Rep; 2016 Jul; 6():30107. PubMed ID: 27435899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces.
    Dmitruk NL; Borkovskaya OY; Mamontova IB; Mamykin SV; Malynych SZ; Romanyuk VR
    Nanoscale Res Lett; 2015; 10():72. PubMed ID: 25852368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency enhancement InGaP/GaAs dual-junction solar cell with subwavelength antireflection nanorod arrays.
    Tsai MA; Chen HC; Tseng PC; Yu P; Chiu CH; Kuo HC; Lin SH
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10729-32. PubMed ID: 22408983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance comparison of III-V//Si and III-V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding.
    Kao YC; Chou HM; Hsu SC; Lin A; Lin CC; Shih ZH; Chang CL; Hong HF; Horng RH
    Sci Rep; 2019 Mar; 9(1):4308. PubMed ID: 30867491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition.
    Kim Y; Lam ND; Kim K; Park WK; Lee J
    Sci Rep; 2017 Feb; 7():42693. PubMed ID: 28209964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au-Capped GaAs Nanopillar Arrays Fabricated by Metal-Assisted Chemical Etching.
    Asoh H; Imai R; Hashimoto H
    Nanoscale Res Lett; 2017 Dec; 12(1):444. PubMed ID: 28683539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
    Han N; Yang ZX; Wang F; Dong G; Yip S; Liang X; Hung TF; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20454-9. PubMed ID: 26284305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Patterning and Directed Self-Assembly of Gold Nanoparticles on GaAs.
    Liu T; Keiper T; Wang X; Yang G; Hallinan D; Zhao J; Xiong P
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43363-43369. PubMed ID: 29140682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical growth of core-shell III-V nanowires for solar cells application.
    Kim DY; Bae MH; Shin JC; Kim YJ; Lee YJ; Choi KJ; Seong TY; Choi WJ
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2913-8. PubMed ID: 24734710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annealing of Au, Ag and Au-Ag alloy nanoparticle arrays on GaAs (100) and (111)B.
    Whiticar AM; Mårtensson EK; Nygård J; Dick KA; Bolinsson J
    Nanotechnology; 2017 May; 28(20):205702. PubMed ID: 28445163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black GaAs with Sub-Wavelength Nanostructures Fabricated via Lithography-Free Metal-Assisted Chemical Etching.
    Wilhelm TS; Kolberg AP; Baboli MA; Abrand A; Bertness KA; Mohseni PK
    ECS J Solid State Sci Technol; 2019; 8(6):. PubMed ID: 32128288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Growth Temperature on the Characteristics of Single-Junction p–i–n InGaP Solar Cells.
    Jung SH; Kim Y; Kim CZ; Jun DH; Kim K; Shin HB; Choi J; Park WK; Lee J; Kang HK
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2559-562. PubMed ID: 29658687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.