These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22966678)

  • 1. Gigacycle fatigue behavior by ultrasonic nanocrystalline surface modification.
    Ahn DG; Amanov A; Cho IS; Shin KS; Pyoun YS; Lee CS; Park IG
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5902-6. PubMed ID: 22966678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Very high cycle fatigue behavior of SAE52100 bearing steel by ultrasonic nanocrystalline surface modification.
    Cho IS; He Y; Li K; Oh JY; Shin K; Lee CS; Park IG
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8264-9. PubMed ID: 25958512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wear behavior of Cu-Zn alloy by ultrasonic nanocrystalline surface modification.
    Cho IS; Amanov A; Ahn DG; Shin K; Lee CS; Pyoun YS; Park IG
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6443-7. PubMed ID: 22121732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural refinement of Al-Si alloy upon ultrasonic nanocrystalline surface modification treatment.
    He Y; Li K; Cho IS; Park IG; Shin K
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8729-34. PubMed ID: 25958593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of rolling-contact-fatigued surfaces via nanoskin technology.
    Pyun YS; Kim JH; Kayumov R; He Y; Shin KS
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6371-5. PubMed ID: 24205664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue characteristics of SAE52100 steel via ultrasonic nanocrystal surface modification technology.
    Pyun YS; Suh CM; Yamaguchi T; Im JS; Kim JH; Amanov A; Park JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6089-95. PubMed ID: 22966714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy.
    Chae JM; Lee KO; Amanov A
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29558402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear ultrasonic characterization of early degradation of fatigued Al6061-T6 with harmonic generation technique.
    Gebrekidan SB; Kang T; Kim HJ; Song SJ
    Ultrasonics; 2018 Apr; 85():23-30. PubMed ID: 29307621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ultrasonic nanocrystalline surface modification on the high-frequency fretting wear behavior of AISI304 steel.
    Cho IS; Lee CS; Amanov A; Pyoun YS; Park IG
    J Nanosci Nanotechnol; 2011 Jan; 11(1):742-6. PubMed ID: 21446536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical and fatigue characteristics of Ti-6Al-4V extra low interstitial and solution-treated and annealed alloys after ultrasonic nanocrystal surface modification treatment.
    Kayumov R; Pyun YS; Suh CM; Murakami R
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9430-5. PubMed ID: 25971078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribological characteristics of corrugated nano-scale dimpled and nanostructured surfaces.
    Park IG; Lee CS; Cho IS
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8253-8. PubMed ID: 24266221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low friction and high strength of 316L stainless steel tubing for biomedical applications.
    Amanov A; Lee SW; Pyun YS
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():176-185. PubMed ID: 27987696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ultrasonic Surface Rolling Processing and Subsequent Recovery Treatment on the Wear Resistance of AZ91D Mg Alloy.
    Zhao X; Liu K; Xu D; Liu Y; Hu C
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in Strength and Fretting Resistance of Alloy 718 Using the Surface Modification Process.
    Amanov A; Umarov R; Amanov T
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30082672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured β-type titanium alloy fabricated by ultrasonic nanocrystal surface modification.
    Kheradmandfard M; Kashani-Bozorg SF; Kim CL; Hanzaki AZ; Pyoun YS; Kim JH; Amanov A; Kim DE
    Ultrason Sonochem; 2017 Nov; 39():698-706. PubMed ID: 28732996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study on Surface Hardening and Wear Resistance of AISI 52100 Steel by Ultrasonic Nanocrystal Surface Modification and Electrolytic Plasma Surface Modification Technologies.
    Magazov N; Satbaeva Z; Rakhadilov B; Amanov A
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.
    Hou X; Qin H; Gao H; Mankoci S; Zhang R; Zhou X; Ren Z; Doll GL; Martini A; Sahai N; Dong Y; Ye C
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1061-1071. PubMed ID: 28575941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wear Enhancement of Wheel-Rail Interaction by Ultrasonic Nanocrystalline Surface Modification Technique.
    Chang S; Pyun YS; Amanov A
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of the Static Load in the UNSM Process on the Corrosion Properties of Alloy 600.
    Kim KT; Kim YS
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Changing Law of Cutting and Ultrasonic Strengthening Surface Integrity during Fatigue of Ti-17 Alloy.
    Zhou Z; Yao C; Tan L; Xin H; Zhang Y; Zhao Y
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.