These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 22966706)

  • 21. Role of lattice oxygen of metal oxides in the dehydrogenation of ethylbenzene under a carbon dioxide atmosphere.
    Saito K; Okuda K; Ikenaga NO; Miyake T; Suzuki T
    J Phys Chem A; 2010 Mar; 114(11):3845-54. PubMed ID: 19719174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterization and oxidative dehydrogenation activity of V2O5/Ce(x)Zr(1-x)O2/SiO2 catalysts.
    Reddy BM; Lakshmanan P; Loridant S; Yamada Y; Kobayashi T; López-Cartes C; Rojas TC; Fernandez A
    J Phys Chem B; 2006 May; 110(18):9140-7. PubMed ID: 16671726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.
    Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE
    Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative Dehydrogenation of Ethanol over Vanadium- and Molybdenum-modified Mg-Al Mixed Oxide Derived from Hydrotalcite.
    Pinthong P; Praserthdam P; Jongsomjit B
    J Oleo Sci; 2019 Jul; 68(7):679-687. PubMed ID: 31178468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation.
    Zhang Y; Wang J; Rong J; Diao J; Zhang J; Shi C; Liu H; Su D
    ChemSusChem; 2017 Jan; 10(2):353-358. PubMed ID: 28000383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Presence of lithium ions in MgO lattice: surface characterization by infrared spectroscopy and reactivity towards oxidative conversion of propane.
    Trionfetti C; Babich IV; Seshan K; Lefferts L
    Langmuir; 2008 Aug; 24(15):8220-8. PubMed ID: 18597504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of CO
    Marquart W; Claeys M; Fischer N
    Faraday Discuss; 2021 Jul; 230(0):68-86. PubMed ID: 34259682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ZrO2 -Based Alternatives to Conventional Propane Dehydrogenation Catalysts: Active Sites, Design, and Performance.
    Otroshchenko T; Sokolov S; Stoyanova M; Kondratenko VA; Rodemerck U; Linke D; Kondratenko EV
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15880-3. PubMed ID: 26566072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF₂-MgO Carriers.
    Bonarowska M; Wojciechowska M; Zieliński M; Kiderys A; Zieliński M; Winiarek P; Karpiński Z
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27898012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-Step Solvothermal Synthesis of Ni Nanoparticle Catalysts Embedded in ZrO
    Meiliefiana M; Nakayashiki T; Yamamoto E; Hayashi K; Ohtani M; Kobiro K
    Nanoscale Res Lett; 2022 Apr; 17(1):47. PubMed ID: 35435525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Efficient Catalysts of Bimetallic Pt-Ru Nanocrystals Supported on Ordered ZrO
    Wang M; Chen D; Li N; Xu Q; Li H; He J; Lu J
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13781-13789. PubMed ID: 32093474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MgO-ZrO
    Rabee AIM; Le SD; Nishimura S
    Chem Asian J; 2020 Jan; 15(2):294-300. PubMed ID: 31808610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Dehydrogenation of n-Butane Over Pt/Sn/Zn-K/Al2O3 Catalyst: Effect of Hydrogen in the Feed.
    Lee JK; Seo H; Kim JK; Seo H; Cho HR; Lee J; Chang H; Song IK
    J Nanosci Nanotechnol; 2016 May; 16(5):4580-6. PubMed ID: 27483794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas.
    Saconsint S; Sae-Tang N; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2022 Sep; 12(1):15195. PubMed ID: 36071147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Equivalence of difluorodichloromethane (CFC-12) hydrolysis catalyzed by solid acid(base) MoO
    Li Z; Tan X; Ren G; Chang Y; Jia L; Duan K; Liu T
    RSC Adv; 2020 Sep; 10(56):33662-33674. PubMed ID: 35519043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Readily-fabricated supported MgO catalysts for efficient and green synthesis of diethyl carbonate from ethyl carbamate and ethanol.
    Li F; Wang L; Xu S; Liang S; Zhang N
    RSC Adv; 2021 Apr; 11(25):15477-15485. PubMed ID: 35424079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced ethylene and ethane production with free-radical cracking catalysts.
    Kolts JH; Delzer GA
    Science; 1986 May; 232(4751):744-6. PubMed ID: 17769569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.
    Sushkevich VL; Ivanova II; Ordomsky VV; Taarning E
    ChemSusChem; 2014 Sep; 7(9):2527-36. PubMed ID: 25123990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of support on the performance of PtRu-based catalysts in oxidative steam reforming of ethanol to produce hydrogen.
    Tang CW; Liu CH; Yu SW; Wang CB
    Front Chem; 2022; 10():1079214. PubMed ID: 36601553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic combustion of ethyl acetate on supported copper oxide catalysts.
    Yang Y; Xu X; Sun K
    J Hazard Mater; 2007 Jan; 139(1):140-5. PubMed ID: 17008000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.