BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 22966707)

  • 21. Carbon Dioxide Reduction with Hydrogen on Fe, Co Supported Alumina and Carbon Catalysts under Supercritical Conditions.
    Bogdan VI; Koklin AE; Kustov AL; Pokusaeva YA; Bogdan TV; Kustov LM
    Molecules; 2021 May; 26(10):. PubMed ID: 34068056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ni nanocatalysts supported on mesoporous Al
    Wu Y; Lin J; Ma G; Xu Y; Zhang J; Samart C; Ding M
    RSC Adv; 2020 Jan; 10(4):2067-2072. PubMed ID: 35494600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesoscale study of crystal-plane effects of Ni catalysts on CO
    Wang X; Liu N; Xu R; Chen B; Dai C; Yu G
    Phys Chem Chem Phys; 2023 Jun; 25(23):16105-16113. PubMed ID: 37278320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation.
    Cui Y; He S; Yang J; Gao R; Hu K; Chen X; Xu L; Deng C; Lin C; Peng S; Zhang C
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homogeneous and highly dispersed Ni-Ru on a silica support as an effective CO methanation catalyst.
    Liu Y; Sheng W; Hou Z; Zhang Y
    RSC Adv; 2018 Jan; 8(4):2123-2131. PubMed ID: 35542588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO
    Dong X; Jin B; Cao S; Meng F; Chen T; Ding Q; Tong C
    Waste Manag; 2020 Apr; 107():244-251. PubMed ID: 32320937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon.
    Hong UG; Kim JK; Lee J; Lee JK; Yi J; Song IK
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8867-72. PubMed ID: 25958619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of Cobalt-Catalyzed CO Hydrogenation: 1. Methanation.
    Chen W; Pestman R; Zijlstra B; Filot IAW; Hensen EJM
    ACS Catal; 2017 Dec; 7(12):8050-8060. PubMed ID: 29226009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing descriptors for CO
    Ray K; Bhardwaj R; Singh B; Deo G
    Phys Chem Chem Phys; 2018 Jun; 20(23):15939-15950. PubMed ID: 29850682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving Anti-Coking Properties of Ni/Al
    Shi Y; Wang S; Li Y; Yang F; Yu H; Chu Y; Li T; Yin H
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of Ni based mesoporous Al
    Lin J; Ma C; Luo J; Kong X; Xu Y; Ma G; Wang J; Zhang C; Li Z; Ding M
    RSC Adv; 2019 Mar; 9(15):8684-8694. PubMed ID: 35518663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nickel Supported on Mesoporous Alumina for Dry Reforming of Methane: Combustion Method.
    Noh YS; Yang EH; Lim SS; Lee KY; Kim SW; Moon DJ
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2545-549. PubMed ID: 29652123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the Calcination Technique of Silica on the Properties and Performance of Ni/SiO
    Panchan N; Donphai W; Junsomboon J; Niamnuy C; Chareonpanich M
    ACS Omega; 2019 Nov; 4(19):18076-18086. PubMed ID: 31720510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Copper Addition on the Activity and Stability of Iron-Based CO₂ Hydrogenation Catalysts.
    Bradley MJ; Ananth R; Willauer HD; Baldwin JW; Hardy DR; Williams FW
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28930186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boosting CO
    Xiang M; Gao Z; Ji X; Li D; Deng Y; Ding Y; Yu C; Zhang W; Zhang Z; Wu Z; Zhou J
    Front Chem; 2022; 10():1041843. PubMed ID: 36304745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing biogas methanation over nickel supported on ceria-alumina catalyst: Towards CO
    González-Arias J; Torres-Sempere G; Arroyo-Torralvo F; Reina TR; Odriozola JA
    Environ Res; 2024 Feb; 242():117735. PubMed ID: 38000630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering Iron-Nickel Nanoparticles for Magnetically Induced CO
    De Masi D; Asensio JM; Fazzini PF; Lacroix LM; Chaudret B
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6187-6191. PubMed ID: 31972063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of Fe-Ni Mixed-Oxide Catalysts for the Reduction of NO by CO: Physicochemical Properties and Catalytic Performance.
    Du X; Yao TL; Wei Q; Zhang H; Huang Y
    Chem Asian J; 2019 Sep; 14(17):2966-2978. PubMed ID: 31286657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Solar-Driven CO
    Wang H; Li Q; Chen J; Chen J; Jia H
    Adv Sci (Weinh); 2023 Dec; 10(34):e2304406. PubMed ID: 37867240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of support bio-templating in Ni/Al
    Roostaei T; Rahimpour MR
    Sci Rep; 2023 Oct; 13(1):16972. PubMed ID: 37813890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.